Introduction to perception Localization

Olivier Aycard

Professor

Grenoble INP - PHELMA

GIPSA Lab

https://www.gipsa-lab.grenoble-inp.fr/user/olivier.aycard

olivier.aycard@grenoble-inp.fr

Outline

- 1. Introduction to localization
- 2. Requirements for localization
- 3. Localization algorithms

Problem statement

Dynamic environments

SLAM + SLAM + DATMO

Moving object detection

$$P(X,M | Z,U) = \begin{cases} Z = Z^{(s)} + Z^{(d)} \\ P(X,M | Z^{(s)},U) \end{cases} P(X,M,O | Z,U) \\ P(X,M | Z^{(s)},U) = \begin{cases} P(X,M,O | Z^{(d)}) \\ P(O | Z^{(d)}) \end{cases}$$

Problem statement

If the map is known: a localization problem

Static environments

Dynamic environments

LOCALIZATION

LOCALIZATION + Moving object detection

LOCALIZATION + DATMO

$$P(X | Z, U, M) = \begin{cases} Z = Z^{(s)} + Z^{(d)} \\ P(X | Z^{(s)}, U, M) \end{cases} P(X, O | Z, U, M)$$

$$P(X | Z^{(s)}, U, M) = \begin{cases} P(X | Z^{(s)}, U, M) \\ P(O | Z^{(d)}) \end{cases}$$

Introduction to localization(1/3)

- While a mobile robot is moving in its environment, it needs to know its position in the environment.
- Lets take an example

- After 4 actions, robair should be at position 10
- • •
- Odometry and motions have some uncertainties

The robot is lost !!!

Introduction to localization(2/3)

- Robair is equipped with a laser scanner to perceive its environment
- It should use the observation provided by the laser scanner to know its position

- After position 7, the laser scanner perceives a wall on the left side of robair: it is located at position 7 (if laser is perfect)
- Laser scanner has some uncertainties

Introduction to localization(3/3)

- The localization process is done in 2 steps:
- 1. Robair moves: it estimates its motion (ie, odometry) to predict where it is:
 - Robair predicts where it could be after a motion: prediction phase
 - ➤ It should have a model of its motion and the associated uncertainty: motion/dynamic model
 - Prediction phase
- 2. Robair observes its environment: it improves its estimation of where it is, comparing/confronting its observation (ie, laser) with the prediction;
 - For each possible predicted position, Robair compares its observation with what it should see if it is located at this position: observation/sensor model
 - Estimation phase or confrontation between prediction and observation

Outline

- 1. Introduction to localization
- 2. Requirements for localization
- 3. Localization algorithms

Requirements for localization: a map(1/4)

- > There exist many representations for a map in robotics;
- Occupancy grid is the most used one;
 - 1. Discretization of the environment into cells;
 - 2. Each cell holds a probability value that the cell is occupied;
 - 3. Low level representation: close to laser data.

Requirements for localization: a map(2/4)

- > There exist many representations for a map in robotics;
- Occupancy grid is the most used one;
 - 1. Discretization of the environment into cells;
 - 2. Each cell holds a probability value that the cell is occupied;
 - 3. Low level representation: close to laser data.

Requirements for localization: a map(3/4)

- > There exist many representations for a map in robotics;
- Occupancy grid is the most used one;
 - 1. Discretization of the environment into cells;
 - 2. Each cell holds a probability value that the cell is occupied;
 - 3. Low level representation: close to laser data.

Requirements for localization: a map(4/4)

Requirements for localization: a dynamic/motion model(1/2)

This model gives an estimation of where robair is after doing an action

- After several translations (without localization), the uncertainties are accumulated
- Drift problem: robair is lost

Requirements for localization: a dynamic/motion model(2/2)

➤ A more realistic model for translations

> Combination of translations and rotations

Probabilistic motion model and its sampling version

Requirements for localization: a sensor/observation model[Dung'07](1/5)

For some predicted positions, we will compare what robair observes with what it should observe

score = 0.21

score = 0.17

Requirements for localization: a sensor/observation model[Dung'07](2/5)

- Suppose that the robot is located at $(x_{map}, y_{map}, \theta_{map})$ in the frame of the map;
 - 1. For each hit of the laser (r_{hit}, θ_{hit}) in the polar space of the frame of the laser, we compute its position (x_{hit}, y_{hit}) in the cartesian space of the frame of the map;

For instance, for the hit with $(r_{hit}, \theta_{hit} = 0^{\circ})$:

- $X_{hit} = X_{map} + r_{hit} * cos(\theta_{map} + 0^{\circ})$
- $y_{hit} = y_{map} + r_{hit} * sin(\theta_{map} + 0^{\circ})$

Requirements for localization: a sensor/observation model[Dung'07](3/5)

- For instance, for the hit of the laser with $(r_{hit}, \theta_{hit} = -90^{\circ})$:
 - $x_{hit} = x_{map} + r_{hit} * cos(\theta_{map} + -90^\circ)$
 - $y_{hit} = y_{map} + r_{hit} * sin(\theta_{map} + -90^\circ)$
- For instance, for the hit of the laser with $(r_{hit}, \theta_{hit} = +90^{\circ})$:
 - $X_{hit} = X_{map} + r_{hit} * cos(\theta_{map} + +90^\circ)$
 - $y_{hit} = y_{map} + r_{hit} * sin(\theta_{map} + +90^\circ)$

Olivier.Aycard@grenoble-inp.fr

Requirements for localization: a sensor/observation model[Dung'07](4/5)

- Suppose that the robot is located at $(x_{map}, y_{map}, \theta_{map})$ in the frame of the map;
 - 1. For each hit of the laser (r_{hit}, θ_{hit}) in the polar space of the frame of the laser, we compute its position (x_{hit}, x_{hit}) in the cartesian space of the frame of the map;
 - $X_{hit} = X_{map} + r_{hit} * cos(\theta_{map} + \theta_{hit})$
 - $y_{hit} = y_{map} + r_{hit} * sin(\theta_{map} + \theta_{hit})$
 - 2. If (x_{hit}, x_{hit}) matchs to an occupied cell in the map then increase score
- For each hit of a laser scan, I check if it matches to the map or not

- > This process is called scan matching
- > It is based on a sensor model

Requirements for localization: a sensor/observation model[Dung'07](5/5)

- How to compute the scan matching score?

- For θ_{hit} = -45°, the cell is occupied, then score = 0 + 1 = 1
- For $\theta_{hit} = 0^{\circ}$, the cell is not occupied, then score = 1 + 0 = 1
- For θ_{hit} = +45°, the cell is occupied, then score = 1 + 1 = 2
- For θ_{hit} = +90°, the cell is occupied, then score = 2 + 1 = 3
- So, for these 4 hits, when the robot is at $(x_{map}, y_{map}, \theta_{map})$, the score is 3

Olivier.Aycard@grenoble-inp.fr

19/42

Outline

- 1. Introduction to localization
- 2. Requirements for localization
- 3. Localization algorithms
 - 1. Example of execution
 - 2. Formalization
 - 3. Advanced localization

Localization algorithms: a simple one+example

- Each time, a given distance has been performed:
 - 1. For each possible predicted position with the motion model, compute its score with the sensor model;
 - 2. Keep the position with the highest score.
- > Example
 - Robair is following a moving person in the LIG;
 - We have a rough idea of the initial position of Robair;
 - Every time Robair has moved by more than 1 meter, we perform localization;
 - > See video on my web page.

Localization algorithms: a simple one+example (1/11)

At the beginning of the localization process, Robair is actually located somewhere here

 \triangleright I will check all the positions (x, y, θ_{hit}) in the red area

Localization algorithms: a simple one+example (2/11)

First observation of Robair (laser scan)

Localization algorithms: a simple one+example (3/11)

> First score with one position

- For Green points are hits of the laser that match to the map
- Red points are hits of the laser that does not match to the map

Localization algorithms: a simple one+example (4/11)

> A better score with an other position

Localization algorithms: a simple one+example (5/11)

> Still better...

Localization algorithms: a simple one+example (6/11)

The best score and the associated position

Localization algorithms: a simple one+example (7/11)

- Robair has moved of more than one meter
- We see the score of its predicted position (given the odometry)

Localization algorithms: a simple one+example (8/11)

The best score and the associated predicted position

Localization algorithms: a simple one+example (9/11)

- Robair has moved again of more than one meter
- > Score of its predicted position (given the odometry)

Localization algorithms: a simple one+example (10/11)

The best score and the associated predicted position

Localization algorithms: a simple one+example (11/11)

> And so on...

Outline

- 1. Introduction to localization
- 2. Requirements for localization
- 3. Localization algorithms
 - 1. Example of execution
 - 2. Formalization
 - 3. Advanced localization

Localization algorithms: a simple one

- ➤ How to determine initial position?
 - Initial position given (by another module or manually)
 - Initial position not given: need to initialize localization:

One approach: Discretize the possible positions p $(x_{map}, y_{map}, \theta_{map})$ Given the first laser scan, compute scores of all positions exhaustively

```
best_score = 0
For (all possible positions p) {
    score = sensor_model(p, scan)
    if (score >= best_score) {
        best_pos = p
        best_score = score
    }
}
```

Localization algorithms: a simple one

One step of relocalization:

The initialisation gives us the estimate of our previous position p_{prev}

Predict new possible p 's with motion model: First, get ideal position:

```
p_{odom} = p_{prev} + motion_done(odometry)
```

Then, account for uncertainty and odometry drift by considering all positions p close to the ideal one:

```
(p_{odom} - constant)
```

Then, we compute scan matching scores like in initialization; Best possible position becomes our p_{prev} for the next relocalization;

We relocalize when odometry tells us we have moved enough;

```
motion_done = new_odom_data - prev_odom_data
if (motion done > 1meter) { relocalize();}
```

Outline

- 1. Introduction to localization
- 2. Requirements for localization
- 3. Localization algorithms
 - 1. Example of execution
 - 2. Formalization
 - 3. Advanced localization

The localization problem[Fox'98]

- ➤ If the initial position is unknown:
 - Robair observes its environment to have an idea of where it is
 - It will manage several positions /hypotheses
 - Managing several hypotheses/positions improves the robustness of localization

Initial position unknown: ultrasonic sensor[Fox'98]

Initial position unknown: ultrasonic sensor[Fox'98]

Initial position unknown: laser sensor[Fox'98]

Summary(1/2)

- The localization process is done in 2 steps:
 - 1. Prediction of possible positions after a given motion;
 - 2. Find the predicted position that corresponds the best to the observation
- > 2 possible initial positions: known or unknown;
- The localization process is a passive process;
- The localization process is used in all navigation systems;

Summary(2/2)

- ➤ Public nodes for mapping and localization are available in ROS: gmap and amcl;
- A complete formalization of the localization process can be found on my web page;
- A video illustrating the localization process can be found on my web page.