Formalization of localization problem: Discrete Bayesian filters

Olivier Aycard

Professor

Grenoble INP - PHELMA

GIPSA Lab

https://www.gipsa-lab.grenoble-inp.fr/user/olivier.aycard

olivier.aycard@grenoble-inp.fr

- Localization of a mobile robot inside a corridor: 1D localization problem
- 1. Initial position known
 - 1. Using actions to predict position
 - 1. Motions are perfect: one example
 - 2. Motions are not perfect: one example + formalization
 - 3. Complete formalization: dynamic model + prediction
 - 2. Using observations to estimate position
 - 1. Observations are pefect: one example
 - 2. Observations are not perfect: one example + formalization
 - 3. Observations are not perfect: second example
 - 4. Complete formalization: sensor model + estimation
- 2. Initial position unknown
- 3. Algorithm to perform localization
- 4. Real examples

• Initial position known, motions are perfect

- 1. $P(S_0 = 6) = 1$
- 2. the mobile robot moves from 1 meter $(A_1 = 1)$ $P(S_1 = 7 \mid A_1 = 1) = 1$
- 3. the mobile robot moves again from 1 meter $(A_2 = 1)$ $P(S_2 = 8 \mid A_2 = 1, A_1 = 1) = 1$
- 4. the mobile robot moves again from 1 meter $(A_3 = 1)$ $P(S_3 = 9 \mid A_3 = 1, A_2 = 1, A_1 = 1) = 1$
- 5. the mobile robot moves again from 1 meter $(A_4 = 1)$ $P(S_4 = 10 \mid A_4 = 1, A_3 = 1, A_2 = 1, A_1 = 1) = 1$

- Localization of a mobile robot inside a corridor: 1D localization problem
- 1. Initial position known
 - 1. Using actions to predict position
 - 1. Motions are perfect: one example
 - 2. Motions are not perfect: one example + formalization
 - 3. Complete formalization: dynamic model + prediction
 - 2. Using observations to estimate position
 - 1. Observations are pefect: one example
 - 2. Observations are not perfect: one example + formalization
 - 3. Observations are not perfect: second example
 - 4. Complete formalization: sensor model + estimation
- 2. Initial position unknown
- 3. Algorithm to perform localization
- 4. Real examples

$$P(S_0 = 6) = 1$$

But motions are not perfect

The robot is lost !!!

- When the mobile robot moves from 1 meter, the mobile robot is located:
 - 1 meter further with a probability of 80%
 - at the same location with a probability of 10%
 - 2 meters further with a probability of 10%
- After one action:

$$P(S_1 = 6 | A_1 = 1) = 0.1 \times 1$$

 $P(S_1 = 7 | A_1 = 1) = 0.8 \times 1$
 $P(S_1 = 8 | A_1 = 1) = 0.1 \times 1$
 $= 0.1$

After one action:

$$P(S_1 = 6 \mid A_1 = 1) = 0.1 \times 1$$
 = 0.1
 $P(S_1 = 7 \mid A_1 = 1) = 0.8 \times 1$ = 0.8
 $P(S_1 = 8 \mid A_1 = 1) = 0.1 \times 1$ = 0.1

After one action (formalization):

$$P(S_1 = 6 \mid A_1 = 1) = P(S_1 = 6 \mid A_1 = 1, S_0 = 6) \times P(S_0 = 6)$$

 $P(S_1 = 7 \mid A_1 = 1) = P(S_1 = 7 \mid A_1 = 1, S_0 = 6) \times P(S_0 = 6)$
 $P(S_1 = 8 \mid A_1 = 1) = P(S_1 = 8 \mid A_1 = 1, S_0 = 6) \times P(S_0 = 6)$

• For
$$s = \{6, 7, 8\}$$

 $P(S_1 = s \mid A_1 = 1) = P(S_1 = s \mid A_1 = 1, S_0 = 6) \times P(S_0 = 6)$

After two actions:

$$P(S_2 = 6 \mid A_1 = 1, A_2 = 1) = 0.1 \times 0.1$$
 = 0.01
 $P(S_2 = 7 \mid A_1 = 1, A_2 = 1) = 0.1 \times 0.8 + 0.8 \times 0.1$ = 0.16
 $P(S_2 = 8 \mid A_1 = 1, A_2 = 1) = 0.1 \times 0.1 + 0.8 \times 0.8 + 0.1 \times 0.1$ = 0.66
 $P(S_2 = 9 \mid A_1 = 1, A_2 = 1) = 0.8 \times 0.1 + 0.1 \times 0.8$ = 0.16
 $P(S_2 = 10 \mid A_1 = 1, A_2 = 1) = 0.1 \times 0.1$ = 0.01

- After two actions (formalization):
- $P(S_2 = 6 \mid A_1 = 1, A_2 = 1) = P(S_2 = 6 \mid A_2 = 1, S_1 = 6) \times P(S_1 = 6 \mid A_1 = 1)$
- $P(S_2 = 7 \mid A_1 = 1, A_2 = 1) = P(S_2 = 7 \mid A_2 = 1, S_1 = 7) \times P(S_1 = 7 \mid A_1 = 1) + P(S_2 = 7 \mid A_2 = 1, S_1 = 6) \times P(S_1 = 6 \mid A_1 = 1)$
- $P(S_2 = 8 \mid A_1 = 1, A_2 = 1) = P(S_2 = 8 \mid A_2 = 1, S_1 = 8) \times P(S_1 = 8 \mid A_1 = 1) + P(S_2 = 8 \mid A_2 = 1, S_1 = 7) \times P(S_1 = 7 \mid A_1 = 1) + P(S_2 = 8 \mid A_2 = 1, S_1 = 6) \times P(S_1 = 6 \mid A_1 = 1)$

. . .

For s = {6, ..., 10} and s' = {6, 7, 8}
P(S₂ = s | A₁ = 1, A₂ = 1) =
$$\sum_{s'}$$
 P(S₂ = s | A₂ = 1, S₁ = s') x P(S₁ = s' | A₁ = 1)

After three actions:

```
• For s = \{6, ..., 12\} and s' = \{6, ..., 10\}

P(S_3 = s \mid A_1 = 1, A_2 = 1, A_3 = 1) = 

\sum_{s'} P(S_3 = s \mid A_3 = 1, S_2 = s') \times P(S_2 = s' \mid A_1 = 1, A_2 = 1)
```

- Localization of a mobile robot inside a corridor: 1D localization problem
- Initial position known
 - 1. Using actions to predict position
 - 1. Motions are perfect: one example
 - Motions are not perfect: one example + formalization
 - 3. Complete formalization: dynamic model + prediction
 - 2. Using observations to estimate position
 - 1. Observations are pefect: one example
 - Observations are not perfect: one example + formalization
 - 3. Observations are not perfect: second example
 - 4. Complete formalization: sensor model + estimation
- 2. Initial position unknown
- 3. Algorithm to perform localization
- 4. Real examples

The localization problem (formalization)

- When the mobile robot moves from 1 meter, the mobile robot is located:
 - 1 meter further with a probability of 80%
 - at the same location with a probability of 10%
 - 2 meters further with a probability of 10%

$$P(S_{t+1} = s+1 \mid A_{t+1} = 1, S_t = s) = 0.8$$

$$P(S_{t+1} = s \mid A_{t+1} = 1, S_t = s) = 0.1$$

$$P(S_{t+1} = s+2 \mid A_{t+1} = 1, S_t = s) = 0.1$$

- This model is called the dynamic model or the action model
- We use this model to predict where the mobile robot will be after doing a given action:

For each s and s' in S
$$P(S_{t+1} = s \mid A_1, ..., A_{t+1}) = \sum_{s'} P(S_{t+1} = s \mid A_{t+1}, S_t = s') \times P(S_t = s' \mid A_1, ..., A_t)$$

• Recursive computation

- Localization of a mobile robot inside a corridor: 1D localization problem
- 1. Initial position known
 - 1. Using actions to predict position
 - 1. Motions are perfect: one example
 - 2. Motions are not perfect: one example + formalization
 - 3. Complete formalization: dynamic model + prediction
 - 2. Using observations to estimate position
 - 1. Observations are perfect: one example
 - Observations are not perfect: one example + formalization
 - 3. Observations are not perfect: second example
 - 4. Complete formalization: sensor model + estimation
- 2. Initial position unknown
- 3. Algorithm to perform localization
- 4. Real examples

$$P(S_1 = 6 \mid A_1 = 1) = 0.1$$

 $P(S_1 = 7 \mid A_1 = 1) = 0.8$
 $P(S_1 = 8 \mid A_1 = 1) = 0.1$

- The mobile robot is equipped with sensors
- If sensors are perfect:
 - when the robot is in front of a wall, it will perceive a wall;
 - when the robot is in front of a door, it will perceive a door.
- Suppose that after its first action $(A_1 = 1)$, it perceives a wall $(O_1 = w)$:

$$P(S_1 = 6 \mid A_1 = 1, O_1 = w) = 0.1 \times 0 = 0$$

 $P(S_1 = 7 \mid A_1 = 1, O_1 = w) = 0.8 \times 1 = 0.8$
 $P(S_1 = 8 \mid A_1 = 1, O_1 = w) = 0.1 \times 0 = 0$

$$P(S_1 = 7 | A_1 = 1, O_1 = w) = 1$$

The robot moves again from 1 meter:

$$P(S_2 = 7 \mid A_1 = 1, O_1 = w, A_2 = 1) = 0.1 \times 1$$

 $P(S_2 = 8 \mid A_1 = 1, O_1 = w, A_2 = 1) = 0.8 \times 1$
 $P(S_2 = 9 \mid A_1 = 1, O_1 = w, A_2 = 1) = 0.1 \times 1$

• Suppose that after its second action $(A_2 = 1)$, it perceives a door $(O_2 = d)$:

$$P(S_2 = 7 \mid A_1 = 1, O_1 = w, A_2 = 1, O_2 = d) = 0.1 \times 0 = 0$$

 $P(S_2 = 8 \mid A_1 = 1, O_1 = w, A_2 = 1, O_2 = d) = 0.8 \times 1 = 0.8$
 $P(S_2 = 9 \mid A_1 = 1, O_1 = w, A_2 = 1, O_2 = d) = 0.1 \times 0 = 0$

O₁ and O₂ confirm motions

- Localization of a mobile robot inside a corridor: 1D localization problem
- 1. Initial position known
 - 1. Using actions to predict position
 - 1. Motions are perfect: one example
 - 2. Motions are not perfect: one example + formalization
 - 3. Complete formalization: dynamic model + prediction
 - 2. Using observations to estimate position
 - 1. Observations are pefect: one example
 - Observations are not perfect: one example + formalization
 - 3. Observations are not perfect: second example
 - 4. Complete formalization: sensor model + estimation
- 2. Initial position unknown
- 3. Algorithm to perform localization
- 4. Real examples

- But the sensors are not perfect
- When the mobile robot is located in front of a door, it perceives:
 - a door with a probability of 80%
 - a wall with a probability of 20%
- When the mobile robot is located in front of a wall, it perceives:
 - a wall with a probability of 90%
 - a door with a probability of 10%

$$P(S_1 = 6 \mid A_1 = 1) = 0.1$$

 $P(S_1 = 7 \mid A_1 = 1) = 0.8$
 $P(S_1 = 8 \mid A_1 = 1) = 0.1$

• Suppose that after its first action $(A_1 = 1)$, it perceives a wall $(O_1 = w)$: $P(S_1 = 6 \mid A_1 = 1, O_1 = w) = 0.1 \times 0.2 = 0.02 = 1/38 = 0.03$

$$P(S_1 = 7 | A_1 = 1, O_1 = w) = 0.8 \times 0.9 = 0.72 = 18/19 = 0.94$$

$$P(S_1 = 8 \mid A_1 = 1, O_1 = w) = 0.1 \times 0.2 = 0.02 = 1/38 = 0.03$$

• Suppose that after its first action $(A_1 = 1)$, it perceives a wall $(O_1 = w)$:

$$P(S_1 = 6 | A_1 = 1, O_1 = w) = P(S_1 = 6 | A_1 = 1) \times P(O_1 = w | S_1 = 6)$$

$$P(S_1 = 7 \mid A_1 = 1, O_1 = w) = P(S_1 = 7 \mid A_1 = 1) \times P(O_1 = w \mid S_1 = 7)$$

$$P(S_1 = 8 \mid A_1 = 1, O_1 = w) = P(S_1 = 8 \mid A_1 = 1) \times P(O_1 = w \mid S_1 = 8)$$

O₁"confirms" A₁

After two actions:

• Suppose that after its second action $(A_2 = 1)$, it perceives a wall $(O_2 = d)$:

$$P(S_2 = 6 \mid A_1 = 1, O_1 = w, A_2 = 1, O_2 = d) = 0.003 \times 0.8 = 0.002 = 0,005$$

 $P(S_2 = 7 \mid A_1 = 1, O_1 = w, A_2 = 1, O_2 = d) = 0.118 \times 0.1 = 0.02 = 0,02$
 $P(S_2 = 8 \mid A_1 = 1, O_1 = w, A_2 = 1, O_2 = d) = 0.758 \times 0.8 = 0.6 = 0,95$
 $P(S_2 = 9 \mid A_1 = 1, O_1 = w, A_2 = 1, O_2 = d) = 0.118 \times 0.1 = 0.002 = 0,02$
 $P(S_2 = 10 \mid A_1 = 1, O_1 = w, A_2 = 1, O_2 = d) = 0.003 \times 0.8 = 0.02 = 0,005$

O₂"confirms" A₂

```
For s = \{6, ..., 10\}

P(S_2 = s \mid A_1 = 1, O_1 = w, A_2 = 1, O_2 = d)

= P(S_2 = s \mid A_1 = 1, O_1 = w, A_2 = 1) \times P(O_2 = d \mid S_2 = s)
```

- Localization of a mobile robot inside a corridor: 1D localization problem
- 1. Initial position known
 - 1. Using actions to predict position
 - 1. Motions are perfect: one example
 - 2. Motions are not perfect: one example + formalization
 - Complete formalization: dynamic model + prediction
 - 2. Using observations to estimate position
 - 1. Observations are pefect: one example
 - Observations are not perfect: one example + formalization
 - 3. Observations are not perfect: second example
 - 4. Complete formalization: sensor model + estimation
- 2. Initial position unknown
- 3. Algorithm to perform localization
- 4. Real examples

After two actions:

• Suppose that after its second action $(A_2 = 1)$, it perceives a wall $(O_2 = w)$:

```
P(S_2 = 6 \mid A_1 = 1, O_1 = w, A_2 = 1, O_2 = w) = 0.003 \times 0.2 = 0.0006 = 0,003

P(S_2 = 7 \mid A_1 = 1, O_1 = w, A_2 = 1, O_2 = w) = 0.118 \times 0.9 = 0.1062 = 0,29

P(S_2 = 8 \mid A_1 = 1, O_1 = w, A_2 = 1, O_2 = w) = 0.758 \times 0.2 = 0.1516 = 0,41

P(S_2 = 9 \mid A_1 = 1, O_1 = w, A_2 = 1, O_2 = w) = 0.118 \times 0.9 = 0.1062 = 0,29

P(S_2 = 10 \mid A_1 = 1, O_1 = w, A_2 = 1, O_2 = w) = 0.003 \times 0.9 = 0.0027 = 0,007
```

O₂ doesn't "confirm" A₂

- Localization of a mobile robot inside a corridor: 1D localization problem
- Initial position known
 - 1. Using actions to predict position
 - Motions are perfect: one example
 - 2. Motions are not perfect: one example + formalization
 - 3. Complete formalization: dynamic model + prediction
 - 2. Using observations to estimate position
 - Observations are pefect: one example
 - Observations are not perfect: one example + formalization
 - 3. Observations are not perfect: second example
 - 4. Complete formalization: sensor model + estimation
- 2. Initial position unknown
- 3. Algorithm to perform localization
- 4. Real examples

The localization problem (formalization)

- When the mobile robot is located in front of a door, it perceives:
 - a door with a probability of 80%
 - a wall with a probability of 20%

For
$$s = \{6, 8, 14\}$$

 $P(O_t = d \mid S_t = s) = 0.8$
 $P(O_t = w \mid S_t = s) = 0.2$

- When the mobile robot is located in front of a wall, it perceives:
 - a wall with a probability of 90%
 - a door with a probability of 10%

For
$$s \neq \{6, 8, 14\}$$

 $P(O_t = d \mid S_t = s) = 0.1$
 $P(O_t = w \mid S_t = s) = 0.9$

This model is called the sensor model

• We use the sensor model to confirm (or not) the prediction done after the action:

```
For s in S

P(S_t = s \mid A_1, O_1, ..., A_t, O_t)

= P(S_t = s \mid A_1, O_1, ..., A_t) \times P(O_t \mid S_t = s)
```

- Localization of a mobile robot inside a corridor: 1D localization problem
- 1. Initial position known
 - 1. Using actions to predict position
 - Motions are perfect: one example
 - 2. Motions are not perfect: one example + formalization
 - 3. Complete formalization: dynamic model + prediction
 - 2. Using observations to estimate position
 - 1. Observations are pefect: one example
 - Observations are not perfect: one example + formalization
 - 3. Observations are not perfect: second example
 - 4. Complete formalization: sensor model + estimation
- 2. Initial position unknown
- 3. Algorithm to perform localization
- 4. Real examples

If the initial position is unknown:

$$P(S_0 = i) = 0.05 \text{ for } i = 1 \text{ to } 20$$

• The mobile robot will make an observation before moving, it perceives a door $(O_0 = d)$:

$$P(S_0 = i \mid O_0 = d) = 0.05 \times 0.8 = 0.19 \text{ for } i = 6, 8 \text{ or } 14$$

 $P(S_0 = i \mid O_0 = d) = 0.05 \times 0.1 = 0.025 \text{ for } i \neq 6, 8 \text{ or } 14$

- Localization of a mobile robot inside a corridor: 1D localization problem
- 1. Initial position known
 - 1. Using actions to predict position
 - 1. Motions are perfect: one example
 - 2. Motions are not perfect: one example + formalization
 - 3. Complete formalization: dynamic model + prediction
 - 2. Using observations to estimate position
 - Observations are pefect: one example
 - Observations are not perfect: one example + formalization
 - 3. Observations are not perfect: second example
 - 4. Complete formalization: sensor model + estimation
- 2. Initial position unknown
- 3. Algorithm to perform localization
- 4. Real examples

Initialization:

$$P(S_0|O_0) = \frac{1}{Z}P(S_0) \times P(O_0|S_0)$$

Input: $P(S_{T-1}|O_{0:T-1},A_{1:T-1})$ (previous probabilit y distribution), A_T , O_T

for all $s \in S_T$

$$P(S_{T} = s | O_{0:T-1}, A_{1:T}) \Rightarrow \sum_{S_{T-1}} P(S_{T} = s | S_{T-1}, A_{T}) \times P(S_{T-1} | O_{0:T-1}, A_{1:T-1}) \text{ (prediction)}$$

$$\text{for all } S \in S_{T}$$

$$P(S_T = s | O_{0:T}, A_{1:T}) = \alpha' P(O_T | S_T = s) P(S_T = s | O_{0:T-1}, A_{1:T})$$
 (extimation : confrontation prediction - observation)

Endfor

return
$$P(S_T|O_{0:T},A_{1:T})$$

 $P(S_T = s | S_{T-1}, A_T)$ is known as the dynamic model and model the uncertainty associated with actions.

 $P(O_T|S_T)$ is known as the sensor model and model the uncertainty associated with sensors.

- Localization of a mobile robot inside a corridor: 1D localization problem
- 1. Initial position known
 - 1. Using actions to predict position
 - 1. Motions are perfect: one example
 - 2. Motions are not perfect: one example + formalization
 - 3. Complete formalization: dynamic model + prediction
 - 2. Using observations to estimate position
 - 1. Observations are pefect: one example
 - Observations are not perfect: one example + formalization
 - 3. Observations are not perfect: second example
 - 4. Complete formalization: sensor model + estimation
- 2. Initial position unknown
- 3. Algorithm to perform localization
- 4. Real examples

Initial position unknown: ultrasonic sensor[Fox'98]

Initial position unknown: ultrasonic sensor[Fox'98]

Initial position unknown: laser sensor[Fox'98]

The localization problem: conclusion

- The localization algorithm works in 2 steps:
 - Predict of position using actions, actions model and previous localization;
 - Estimation of position using observations, sensor model and prediction;
- The actions model and the sensor model are needed to perform localization: these 2 models are built using knowledge on the mobile robot;
- The localization algorithm works in the same way if initial position is known or unknown: only initial distribution over the state is different;
- There are several implementations of this algorithm:
 - Discrete Bayesian filter;
 - Kalman filter;
 - Particle filter.