Introduction to perception Detection And Tracking of Moving Objects (DATMO)

Olivier Aycard

Professor

Grenoble INP - PHELMA

GIPSA Lab

https://www.gipsa-lab.grenoble-inp.fr/user/olivier.aycard

olivier.aycard@grenoble-inp.fr

Perception

Goal

- Robot perception in dynamic environments
- Laser scanner
- Speed and robustness

Present Focus: interpretation of raw and noisy sensor data

- Identify static and dynamic part of sensor data
- Modeling dynamic part of the environment
 - Detection And Tracking of Moving Objects (DATMO)
- Modeling static part of the environment
 - Simultaneous Localization And Mapping (SLAM)

Problem statement

Static environments

Dynamic environments

$$P(X,M | Z,U) = \begin{cases} Z = Z^{(s)} + Z^{(d)} \\ P(X,M | Z^{(s)},U) \end{cases} P(X,M,O | Z,U) \\ P(X,M | Z^{(s)},U) = \begin{cases} P(X,M,O | Z^{(d)}) \\ P(O | Z^{(d)}) \end{cases}$$

Outline

- 1. Form objects
 - 1. Clustering hits of the laser
- 2. Detection of objects
- 3. Tracking of a moving object
- 4. Conclusion

- Hits of laser are not objects
 - We need to cluster hits to form objects
 - Hits that are close in the **cartesian space** should belong to the same object: $P_i^t = (x_i^t, y_i^t)$ (ith at time t)
- Example of a person in front of a wall

Initialization of the first cluster

Create a first cluster with the first hit

For all the hits except the first one

If the euclidian distance between the current hit and the previous hit is lower than a given threshold

Then add the current hit to the current cluster

Else create a new cluster with the current hit

Initialization of the first cluster

Create a first cluster with the first hit

For all the hits except the first one

If the euclidian distance between the current hit and the previous hit is lower than a given threshold

Then add the current hit to the current cluster

Else create a new cluster with the current hit

End for

 $d(P_1^t, P_0^t)$ is the euclidean distance between P_1^t and P_0^t $d(P_1^t, P_0^t) < th.$ Olivier.aycard@grenoble-inp.fr

Initialization of the first cluster

Create a first cluster with the first hit

For all the hits except the first one

If the euclidian distance between the current hit and the previous hit is lower than a given threshold

Then add the current hit to the current cluster

Else create a new cluster with the current hit

Initialization of the first cluster

Create a first cluster with the first hit

For all the hits except the first one

If the euclidian distance between the current hit and the previous hit is lower than a given threshold

Then add the current hit to the current cluster

Else create a new cluster with the current hit

Initialization of the first cluster

Create a first cluster with the first hit

For all the hits except the first one

If the euclidian distance between the current hit and the previous hit is lower than a given threshold

Then add the current hit to the current cluster

Else create a new cluster with the current hit

$$d(P_4^t, P_3^t) > th.$$

Initialization of the first cluster

Create a first cluster with the first hit

For all the hits except the first one

If the euclidian distance between the current hit and the previous hit is lower than a given threshold

Then add the current beam to the current cluster

Else create a new cluster with the current beam

$$d(P_4^t, P_3^t) > th.$$

 $d(P_5^t, P_4^t) < th.$

Initialization of the first cluster

Create a first cluster with the first hit

For all the beams except the first one

If the euclidian distance between the current hit and the previous hit is lower than a given threshold

Then add the current beam to the current cluster

Else create a new cluster with the current beam

$$d(P_4^t, P_3^t) > th.$$

 $d(P_5^t, P_4^t) < th.$

$$d(P_6^t, P_5^t) > th.$$

- Hits of laser are not objects
 - We need to cluster hits to form objects
 - Hits that are close in the **cartesian space** should belong to the same object: $P_i^t = (x_i^t, y_i^t)$ (ith at time t)
- Example of a person in front of a wall

Outline

- 1. Form objects
- 2. Detection of objects
 - 1. Motion based detection of objects
 - 2. Model based detection of objects
 - 3. Motion+model based detection of objects
- 3. Tracking of a moving object
- 4. Conclusion

Motion based detection of moving objects(1/5)

A very simple idea (but it works):

- A scan of the laser at time T composed of N observations:
 - $ightharpoonup r^{T} = \{r^{T}_{0}, r^{T}_{1}, ..., r^{T}_{N-1}\};$ (range in the polar space)
- For each observation r^T; at time T with i between 1 and N:
 - > we make the difference with the initial observation:
 - ightharpoonup If $r_i^0 r_i^T >$ threshold then r_i^t should correspond to a moving object
 - ➤ We have to store r⁰: background

Initial time t = 0

current time t = T

Motion based detection of moving objects(2/5)

An other idea (a bit more complex):

- For each observation r^T_i at time T with i between 1 and N:
 - \triangleright we make the difference with the previous observation r^{T-1}_{i} :
 - ightharpoonup If $r_i^T r_i^{T-1} >$ threshold for one or several observations
 - ightharpoonup If $r_j^T = r_j^{T-1}$ for one or several observations with j > i
 - ightharpoonup If $r^{T-1}_k r^T_k >$ threshold for one or several observations with k > j
 - > an object should be moving from left to right

previous time

current time

Motion based detection of moving objects(3/5)

An other idea (a bit more complex):

- Difference for each beam b between the current laser scanner acquisition and the previous one
 - \triangleright we make the difference with the previous observation r^{T-1}_{i} :
 - ightharpoonup If $r^{T-1}_i r^T_i >$ threshold for one or several observations with i
 - ightharpoonup If $r_j^T = r_j^{T-1}$ for one or several observations with j > i
 - ightharpoonup If $r_k^{T} r_k^{T-1} >$ threshold for one or several observations
 - > an object should be moving from right to left

Motion based detection of moving objects(4/5)

Goal:

> Detection based of moving objects using a lidar

Solution:

> Distinguish changes in the lidar scanner due to motion

Assumptions:

- > Static (or known position) of the mobile robot
- Need of the initial observations r_i^0 with $0 \le i \le N-1$ (ie, background image) or the previous observations Z^{T-1}_i with $0 \le i \le N-1$

Advantages:

- ➤ No a priori knowledge on object dynamic
- > No a priori knowledge on object form

Motion based detection of moving objects(5/5)

Detection of moving objects with a mobile robot that could move:

> 3 important points should be taken into account

1. ...

2. ...

3. ...

Outline

- 1. Form objects
- 2. Detection of objects
 - 1. Motion based detection
 - 2. Model based detection
 - 1. Apriori model
 - 2. Learned model
 - 3. Motion+Model based detection
- 3. Tracking of a moving object
- 4. Conclusion

Model based detection of objects(1/6)

We need to have a model of typical objects that we want to detect.

- 2 kinds of methods are used to detect typical objects:
 - Define an apriori model[Dung'09];
 - 2. Learn (using statistical learning) of the model [Arras'12];

Model based detection objects(2/6)

Use of an apriori model of typical objects[Dung'09]

- ⇒ Suppose that objects are a specific model of car.
- \Rightarrow We know the size of this specific model of car. •
- ⇒ Most of the time only a part of objects is perceived
- ⇒ We should fit our data with the model

Model based detection of objects(3/6)

Example: scan of a typical office environment [Arras12]. Where are people?

Model based detection of objects(4/6)

This is not easy to recognize people: the appearance can change drastically[Arras12]

1. Learn a statistical model of the typical object

- 1. Extract some interesting features of objects and perform statistical learning on these features;
 - For recognition of legs (14 features): number of hits, standard deviation, circularity, radius...
- 2. Combine these features using statistical learning.
 - Adaboost, svm...
- 2. Use this model to perform detect/recognition of the typical objects

Recognition of typical objects(5/6)

Fig. 15 Space where we have recorded the datasets for our experiments.

[Arras12]

Model based detection of objects(6/6)

Suppose that objects are persons

- 1. Define an apriori model of a person
 - ⇒ A person has two legs located at less than 70cms one from the other
 - ⇒ A leg has a size between 5cms and 25cms

Outline

- 1. Form objects
- 2. Detection of objects
 - 1. Motion based detection
 - 2. Model based detection
 - 3. Model+Motion based model
- 3. Tracking of a moving object
- 4. Conclusion

Model+motion based detection of objects

Suppose that objects are moving persons

- 1. Define an apriori model of a person
 - ⇒ A person has two legs located at less than 70cms one from the other
 - ⇒ A leg has a size between 5cms and 25cms
- 2. A person is supposed to move

Outline

- 1. Form objects
- 2. Detection of objects
 - 1. Motion based detection
 - 2. Model based detection
 - 3. Model+Motion based model
- 3. Tracking of a moving object
 - 1. 2 examples
 - 2. Tracking of a moving object
- 4. Conclusion

Example 1 (1/3)

- We track a moving person at time t;
- Robair starts to move to this tracked moving person. The moving tracked person moves as well;

Example 1 (2/3)

- We track a moving person at time t;
- Robair starts to move to this tracked person. The tracked person moves as well;
- At time t+1, we detect 3 static/moving persons;

Example 1 (3/3)

- We track a moving person at time t;
- Robair starts to move closer to this tracked person. The tracked person moves as well;
- At time t+1, we detects 3 static/moving persons;
- We associate the tracked person at time t with the closest moving person detected at t+1;
- We estimate the position of the tracked person at time t+1.

Example 2 (1/2)

- We track a moving person at time t;
- Robair starts to move to this tracked person. The tracked person moves as well;
- At time t+1, we detect 2 static/moving persons;

Example 2 (2/2)

- We track a moving person at time t;
- Robair starts to move to this tracked person. The tracked person moves as well;
- At time t+1, we detect 2 static/moving persons;
- We dont associate the tracked person at time t with the closest person detected at t+1
- The tracked person is still at the same position at time t+1 before

Tracking of a Moving Object (1/2)

- The goal of tracking is to integrate the sequence of detections in time of a moving object to know its position while this object moves and the robot moves as well;
- Several problems could appear:
 - Several moving objects are present in the environment
 - The tracked objects is sometimes not detected
- We generally manage the tracking of an object with 2 variables:
 - Uncertainty to know which detected objects could be associated with the tracked object;
 - Frequency to know the number of times the tracked object has been detected in the last times.

Tracking of Moving Objects (2/2)

- Using the information about the motion of the tracked object at time t, we predict its position at time t+1;
 prediction phase
- 2. Using the different detected moving objects at time t+1, we associate one (or several) of these detections with the tracked moving object;
 - => association phase
- 3. Using the information about the associated objects detected, we estimate the position of the tracked object at time t+1;
 - => estimation phase

Example 1 revisited: prediction phase

- A moving person is detected at time t
- Robair start to move to this moving person
- To simplify, we dont take into account the information, we have about the motion of the tracked object
 - => no prediction

Example 1 revisited: association phase

- At time t+1, we detects 3 static/moving persons;
- We associate the tracked person at time t with the closest moving person detected at t+1 and taking into account the uncertainty;
 - => association phase

Example 1 revisited: estimation phase

- We estimate the position of the tracked person at time t+1;
 - => estimation phase

Example 2 revisited

- We track a moving person at time t;
- Robair start to move to this tracked person. The tracked person moves as well;
- At time t+1, we detect 2 static/moving persons;
- We dont associate the tracked person at time t with the closest person detected at t+1;
- The tracked person is still at the same position at time t+1 before

Example 2 revisited

- We track a moving person at time t;
- Robair start to move to this tracked person. The tracked person moves as well;
- If frequency == 0 then we consider that the tracked person has been lost
- and we stop the tracking

betore atter

:+1

Outline

- 1. Form objects
- 2. Detection of objects
- 3. Tracking of a moving object
- 4. Conclusion

Conclusion

- Hits of the laser are not objects: need to cluster hits to form objects
- Need to detect objects and know their type and if there are moving or not
- First lab, You will implement a moving person detector
- Detection is not enough: tracking is a must
- There exists a lot of implementation of a tracker:
 - Kalman filter, Mean shift, particle filter...
- You will implement a tracker of a moving person