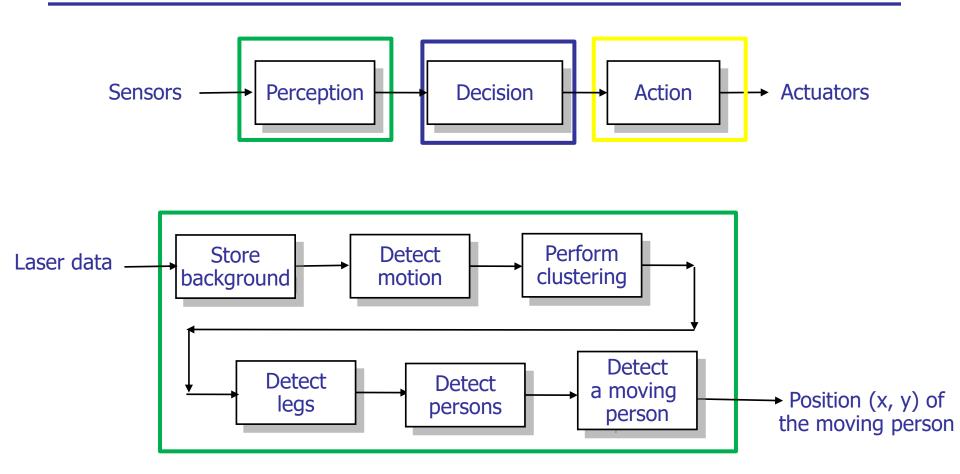
Follow me behavior (detection part)

Olivier Aycard

Grenoble INP - PHELMA
GIPSA Lab

 $\frac{ \texttt{https://www.gipsa-lab.grenoble-inp.fr/user/olivier.aycard}}{olivier.aycard@grenoble-inp.fr}$

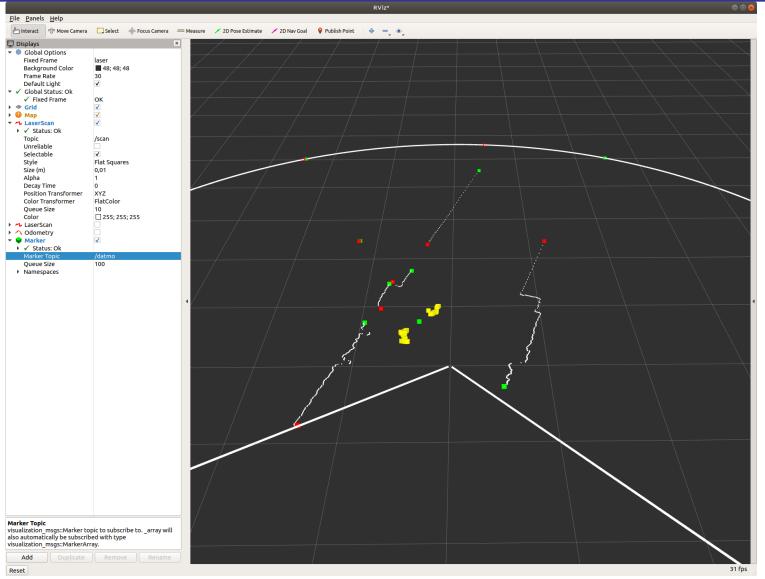


Follow me behavior (perception part): definition (1/2)

- The goal of the lab is to implement the laser processing to detect a moving person;
- A moving person has:
 - Two legs that are moving;
 - Two legs with a maximum distance of 70cms between them;
 - > A leg is a cluster with a size between 5cms and 25cms;
 - ➤ A moving cluster is a cluster that has at least 75% of its hits that are dynamic;
 - > A moving person is a person with

Follow me behavior (perception part): definition (2/2)

Each time, we receive new laser data, this process is done


Follow me behavior (perception part): installation + implementation

- 1. In ~/catkin_ws/src/follow_me/src/datmo.cpp: you have to implement the methods:
 - Store_background;
 - Reset_motion;
 - Detect_current_motion;
 - Detect_motion;
 - Perform_clustering;
 - 6. Perform_basic_clustering;
 - 7. Perform_advanced_clustering;
 - Detect_legs;
 - Detect_persons;
 - 10. Detect_a_moving_person;

Follow me behavior (perception part): tests(1/2)

- Open 5 tabs in a terminal:
 - 1. Roscore: the ROS master;
 - Rosbag play data_file.bag: to play a saved file;
 - 3. Rosrun follow_me detection_node;
 - 4. Rosrun follow_me robot_moving_node;
 - ➤ The laser data are only processed when the robot does not move;
 - This is automatically taken into account by the node robot_moving_node;
 - You do not have to take care about this issue.
 - 5. Rviz: the vizualization tool of ROS.
 - Open your configuration file to see the data and process.

Follow me behavior (perception part): tests(2/2)

