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Abstract—In this paper, we detail a complete software archi-
tecture of a key task that an intelligent vehicle has to deal with:
frontal object perception. This task is solved by processing raw
data of a radar and a mono-camera to detect and track moving
objects. Data sets obtained from highways, country roads and
urban areas were used to test the proposed method. Several
experiments were conducted to show that the proposed method
obtains a better environment representation, i.e., reduces the false
alarms and miss detections from individual sensor evidence.

I. INTRODUCTION

Perceiving or understanding the environment surrounding a
vehicle is a very important step in driving assistance systems or
autonomous vehicles. Recently, there have been considerable
research efforts focusing on specific aspect of this problem [1],
[2] in the frame of several european projects1.

However, for many aspects of perception, there still remains
many open questions. In the frame of the european project
Interactive, the goal is to

In this paper, we detail the software architecture of one
module of this architecture: the frontal object perception is
dedicated to detect and track the moving objects located in
front of the ego-vehicle. This module uses the raw data of a
radar and a camera as inputs.

Fig. 1. General architecture of the Frontal Object Perception.

Figure 1 shows the general architecture of the frontal object
perception module for one of the ego-vehicle involved in the
interactIVe project. This architecture is composed of three
levels of processing that are described in the next sections:

1) first of all, raw data of radar and mono-vision are
processed to detect moving objects. Actually, these

1http://www.intersafe-2.eu, www.prevent-ip.org
1http://www.interactive-ip.eu

processings are done in two steps: first of all, each
sensor delivers informations about moving objects that
it has detected. In a second step, and secondly these
informations are used to detect moving pedestrians and
moving vehicles.

2) the Fusion processing which takes as an input the list of
the detected objects (pedestrians and vehicles) provided
by both kind of sensors and delivers a fused list of
detected objects.
In most of the works related to fusion [3] [4], the
fusion is done after tracking. The main advantage of this
strategy is that the fusion could be designed indepen-
dently of the sensors. This is very convenient to design
generic methods to perform sensor data fusion. On the
other hand, high level fusion has several drawbacks: to
be able to perform fusion, we have to wait until an
object is tracked which can take several frames. Another
important problem is when an object is detected, it is
sometimes not created for tracking due to numerous
false alarms or mis-detections. To overcome these diffi-
culties, we will perform the fusion at the detection level
(ie, before tracking). The basic idea is to perform fusion
using the list of detected objects provided by each sensor
to decrease the level of false alarms or mis-detections
and hence to improve the quality of tracking.

3) the Tracking processing module which takes as an input
the fused list of objects and delivers a list of tracked
objects.

The rest of the paper is organized as follows. In the next
section, we present the demonstrator used for this work and
sensors installed on it. In section III, we describe the sensor
processing done with radar and mono-vision. In sections IV
and V, we detail our work on fusion and tracking. Experimen-
tal results are reported in section VI. We conclude this work
in section VII.

II. VEHICLE DEMONSTRATOR

A car demonstrator part of the interactIVe European project
is used in order to obtain data sets from different situations.
The process of data acquisition focus in three scenarios:
highway, countryside, and urban areas. The TRW Conekt
demonstrator car is a Fiat Stilo previously used in the
PReVENT-SASPENCE project. It is equipped with a sensor



array composed of the TRW AC100 medium range radar
mounted below the registration plate and the TRW TCam
camera, positioned below the rear view mirror, providing lane
detection and raw image for video processing. Also vehicle
ego motion is filtered and provided through the CAN bus.
Figure 2 shows images of the interactIVe demonstrator used
to perform the experiments.

Fig. 2. Images from the TRW Conekt demonstrator.

The radar sensor is medium range radar with a detection
range up to 150m, a field of view of ±8◦, and an angular
accuracy of 0.5◦. The camera has on-board processing and
image recognition routines embedded, its frame rate is 30Hz.

III. RADAR AND MONOVISION PROCESSING

This section details the processings that are done on the
radar and on the mono camera: the low level radar processing
delivers a list of detected moving objects and the mono
camera processing delivers information about the detected
object located in front of the ego vehicle.

In a second step, two post processing modules are included
in order to detect specific objects of interest: vehicles and
pedestrians. These modules, based on radar and visual infor-
mation, intent to reduce the number of false alarms from radar
sensor and the pedestrian miss detections. The input data for
these modules is composed of a list of targets detected by the
radar and camera sensors. The output of both modules are a
list of detected objects (pedestrians or vehicles).

In the next subsections, we give details about these 4
modules.

A. Radar processing

The mid-range TRW radar contains an internal processing
able to detect static and moving objects having a radar cross-
section similar to a car. The list of these objects, called targets,
is passed through CAN bus. Radar data is given as a list of
n targets detected in the radar field of view. Each element
of the list include the range, azimuth and relative speed of
the detected target. As the sensor will produce a return for
each object with a significant radar cross section, targets may
correspond to static objects or objects different from vehicle,

producing false positives. In a similar way, ’weak objects’ like
pedestrian can not always be detected consequently producing
miss detections. Therefore, it is necessary to address the issues
in the next stages of the processing.

B. Mono camera processing
The TRW camera also contains an internal processing

which computes an headway detection and send through CAN
bus, call VideoCAN for clarification purposes. This camera-
embedded process outputs the position of the detected object
in front of the ego-vehicle giving the centre point of the
object in term of range and lateral relative position, and an
estimation of its width. While this data contains very few false
detections, we have to deal with the approximated accuracy
of the detection and some miss detection is complex cases.

C. Vehicle detector
This block of the architecture aims to use both radar and

video outputs at two different steps to perform robust vehicle
detection. Radar sensors have a good range resolution and a
crude azimuth estimation and video sensors are able to give
a precise lateral estimation while having an uncertain range
estimation. A two-stage fusion process gains the advantages
of both sensors while suppressing their drawbacks.

Radar output is used for gating purposes to confirm the
detections at each stage and assign a good range and velocity
to the detected object. The camera output is then used to
confirm the initial detection and refine the object lateral
position.

Furthermore, to improve the efficiency of the detector,
detections are integrated through time using a multi-object
tracking approach. Each track state estimation and prediction
is performed using a Kalman Filter. This simple filter allows
a fast computation while producing sufficient results for this
detection stage for which the aim is only to produce robust
detection and not perform very precise tracking.

Figure 3 shows the approach taken and the different steps
used in the multi-object detection and tracking with sensor
fusion. Blue coloured blocks represent different sensor inputs,
red blocks the different outputs and grey represents all the
functional blocks.

The first step of the detection cycle is to use the previous
track list and the radar output to perform association. For this
association stage, a nearest neighbour approach is used and
allows tagging of each track as ”not confirmed”, ”associated”
or ”un-associated radar object” (new track).

In the next step, the camera is used to compute a histogram
of edges for each track. Using this histogram, the most
probable object boundary is computed, allowing the objects
lateral position to be obtained. Furthermore, according to the
histogram shape and density, a likelihood function computes
the probability that the current track is a vehicle. The use of
this likelihood function has three advantages at this stage of
the method:
• The first is that is permits unassociated tracks to be

kept with the radar, allowing us to cope with radar
misdetections.



Fig. 3. Pedestrian Detector work flow. Inputs are depicted in blue and outputs
in red.

• The second is that it allows assignment and refinement at
each cycle of the probability that the track is a vehicle.

• The last is that it prevents spurious measurement from
the radar creating a new track which does not match a
vehicle histogram pattern.

In a later step, tracks which have been confirmed are updated
according to the associated radar track and the video histogram
search result. The new track state estimation is performed
using the Kalman filter associated for each track. After this
state, the list of tracks is outputted as the final detection set
and used in the next steps of the architecture. Moreover, Tracks
that have not been confirmed by histogram search have their
deletion counter incremented. If this deletion counter reaches
a defined level, the track is marked for deletion and will be
deleted at the end of the cycle. If the deletion counter has not
been reached, the track is still considered valid and is treated
as an associated track for the rest of the process.

Finally, in a last stage, the prediction of the Kalman filter
is run for each valid track. The Kalman prediction is made
according to the track velocity (given by the radar), range and
lateral position and the ego-vehicle motion. This prediction
will be used for the gating with the radar in the next cycle.

By following this approach, robust vehicle detection is
performed by using the complementarities of the radar and
the video sensors. Figure 4 (a) shows an output example from
the vehicle detector. It can be seen that this post processing
module still has some miss detections and false alarms that
have to be corrected in order to provide a better list of detected
objects.

D. Pedestrian detector

Pedestrian detection is a difficult task in computer vision
domain, there exist several works regarding this problem. A
good visual feature selection for pedestrian representation is
needed in order to achieve a good detection rate, avoiding false
alarms and reducing miss detections.

The pedestrian detector module scans the image using a
sliding window of fixed size to detect the pedestrians. A
modified version of histogram of oriented gradients (HOG)
features powers the pedestrian representation at training and
detection time. Several images, extracted from the Daimler
Pedestrian Benchmark data sets [5], were used as training
datasets for the training process.

The classification process is made by a boosting-based
classifier. Boosting is a powerful learning concept, which
provide a solution to the supervised classification learning
task. It combines the performance of many weak classifiers
(slightly correlated with the true classification) to produce a
powerful group [6]. Weaks classifiers are only required to
perform better than chance, hence they can be very simple
and computationally inexpensive.

The boosted model is based on N training examples (xi, yi)
with xi ∈ Rk and yi ∈ {−1,+1}. xi is a K-component vector.
Each component encodes a feature relevant for the learning
task. The desired two-class output is encoded as −1 and +1.

We use the standard two-class discrete AdaBoost algorithm
reviwed in [7]. Each training sample is initially assigned the
same weight. Next a weak classifier fm(x) is trained on the
weighted training data. Its weighted training error and scaling
factor cm is computed. The weights are increased for training
samples, which have been misclassified. All weights are then
normalized, and the process of finding the next weak classifier
continues for another M − 1 times. The final classifier F (x)
is the sign of the weighted sum over the individual weak
classifiers. Decision trees are usedas weak classifiers in this
boosting scheme.

The list of targets given by this detector includes a bounding
box surrounding each detected pedestrian. A camera-ground
transformation process is performed, using the horizon line
provided by the camera, to convert the image reference system
to the evidential grid reference system. Figure 4 (b) shows an
output example obtained from the pedestrian detector.

Fig. 4. Outputs from the post processing modules: (a) green bounding
boxes represent the detected vehicles; (b) yellow bounding boxes represent
the pedestrians detected by the pedestrian detector.



Fig. 5. General scheme of the fusion approach.

IV. FUSION PROCESS

DS occupancy grids have been used since several years
ago [8], [9], [10], [11], these grids are an alternative to the
widely used Bayesian occupancy grids proposed in [12]. Both
kind of grids are a discrete representation of the real world,
they aim to quantify the occupancy or emptiness of each cell
using information from sensors. Usually, in a Bayesian grid,
a cell has two possible states: empty (E) or occupied (O).
However, in DS theory there are two more states: ignorance
and conflict states. Evidence is obtained from the observations
that support one or a set of possible states. The set Ω = {E,O}
is called the frame of discernment and the number of states
for each cell is the power set of this frame: 2Ω.

DS theory uses basic belief assignments (BBA) to initialize
each state in 2Ω. A BBA maps the evidence for each subset in
2Ω to a real value, this value means the support of the evidence
for a particular state. A BBA function is described as follows:

m(∅) = 0,∑
A⊆Ω m(A) = 1.

(1)

In order to combine different sources of evidence a combi-
nation rule is required. Several fusion operators have been pro-
posed in the evidential framework concerning scenarios with
different requirements. One of the widely used is that proposed
by Dempster [13]. Dempster’s rule of combination assumes
independence and reliability of both sources of evidence.

Figure 5 shows the proposed method that performs the
fusion at detection level. This receives, as inputs, the list
of detected objects from several sensor processing modules.
Iteratively, the fusion process i) takes one of the inputs and
represented it into a temporary evidential grid using a sensor
model to do so; 2) subsequently, it fuses the current evidential
grid with the temporary one; until all the inputs are processed.
A clustering process is needed after the fusion process to
identify the objects from the final evidential grid. All the
evidence this method uses comes from the current state of
the sensors and neither previous nor predicted information is
included. Several sensors and post-processing modules can be
attached to extend the proposed architecture.

Following the Dempster’s rules definition from [13], we
obtain equation 2 for two mass functions m1 and m2, where
m1 represents the current state of the environment and m2 the
new available data from one of the sensors. The fusion process
assumes independence of the cells and combines the evidence
cell by cell from the two evidential grids.

m1 ⊕m2({F}) = m1({F})m2({F})+
m1({F})m2({F,O})+
m1({F,O})m2({F})

m1 ⊕m2({O}) = m1({O})m2({O})+
m1({O})m2({F,O})+
m1({F,O})m2({O})

m1 ⊕m2({F,O}) = m1({F,O})m2({F,O})
K1⊕2 = m1({F})m2({O})+

m1({O})m2({F})

(2)

we can see how evidence is supporting each possible state
from Ω, for example state {F}, is supported by beliefs
from m1({F}), m2({F}), m1({F,O}), m2({F,O}) while
ignorance state {F,O} is just supported by evidence from
m1({F,O}) and m2({F,O}). Reliability assumption from
both sources allows us to use the belief from {F,O} state
to support other states in Ω. Each one of the mass functions
obtained from the combination rule is normalized using the
conflict factor K1⊕2.

A. Sensor models

The proposed fusion process requires these BBAs as inputs,
several sensor models are proposed to generate the correspond-
ing BBAs and populate the grids.

1) Radar: Radar sensor givens a list of n targets detected
in the radar field of view. We assume that all the area outside
of the field of view of the radar is unknown, likewise the
triangular area behind the targets, this means that we have
no evidence to support this area is occupied or empty. All
the area inside the target area is considered occupied. All
the remaining area is considered as free. A mapping process
was implemented to transform real target coordinates into a
common frame of reference.

Figure 6 a) shows an example of the evidential grid for
radar sensor. Here we can see all the cases explained above.
Even if graphically the cells inside the target area are marked
as occupied, their vector of mass functions have real values.

The evidence we obtain from the sensor data is defined by
a BBA and applied to each cell depending on its occupancy
state. The BBA that the proposed method uses is defined as
follows.



Fig. 6. Evidential grid for a) radar sensor; and b) camera sensor after applying
its sensor model.

m({F}) = 1− λfa,
m({O}) = 0,
m({F,O}) = λfa, if cell is free
m({∅}) = 0
m({F}) = 0,
m({O}) = 1− λmd × γ,
m({F,O}) = λmd × γ, if cell is occupied
m({∅}) = 0
m({F}) = 0,
m({O}) = 0,
m({F,O}) = 1, if cell is unknown
m({∅}) = 0

(3)

where λfa and λmd are confidence factors in [0, 1] that
represent the false alarms and miss detections ratio for this
sensor, doing this we are representing the uncertainty from
the sensor observations.

2) Camera: The camera sensor, from now on known as
videoCAN, obtains the detected object (only one) in front of
the ego-vehicle. We perform the same transformation process
as we did for radar sensor. Here we consider two possible
areas: the area inside the detected object is considered as
evidence for the occupied state; the area outside the detected
object is considered as unknown because there is no evidence
about the state of each cell and because of the sensor just
detects the object in the very front regardless other possible
existing objects.

Figure 6 b) represents the evidential grid for videoCAN
sensor data. Using the assumptions from the videoCAN sensor
evidence we define the BBA as will be stated next.

m({F}) = 1− λfa,
m({O}) = 0,
m({F,O}) = λfa, if cell is free
m({∅}) = 0
m({F}) = 0,
m({O}) = 1− λmd,
m({F,O}) = λmd, if cell is occupied
m({∅}) = 0
m({F}) = 0,
m({O}) = 0,
m({F,O}) = 1, if cell is unknown
m({∅}) = 0

(4)

here we use two factors to represent the uncertainty of the
measures for occupied (λfa) or free(λmd) states.

3) Post processing modules: A similar sensor model to
the VideoCAN is proposed to map the information from the
vehicle detector module, but instead of taking just one object
as occupied area, it takes the area inside each detected vehicle.
The rest area is taken as empty because we suppose the vehicle
detector detects all the objects of interest. Two individual
factors indicate the false alarms and miss detections for this
post processing module.

In order to use the output list provided by the pedestrian
detector module we need to transform this list into evidence
in the evidential grid. For this reason we use a similar sensor
model to that used for the vehicle detector module: based in
the area occupied by the detected objects and in the area where
no objects are detected.

B. Clustering process

A clustering process is used to find the objects within the
final grid. The main parameter used to perform this process is
the highest mass value of each cell. Figure 7 shows the result
of the clustering process illustrating three objects founded after
the proposed fusion method. A cell is considered to be part
of an object if its highest mass value comes from O set.
All the cells with highest O value inside a neighborhood are
part of the same object. All the cells with highest {O,F}
value surrounding an object are part of the same object. Cells
with highest F value are not part of any object. The area
composed with only cells with highest value O is called the
area of maximum belief. The area surrounding an object and
composed only for cells with highest O,F value is called the
uncertainty area.

V. TRACKING PROCESS

In general, the multi objects tracking problem is com-
plex: it includes the definition of tracking methods, but also
association methods and maintenance of the list of objects
currently present in the environment. Bayesian filters are
usually used to solve tracking problem. These filters require
the definition of a specific motion model of tracked objects to
predict their positions in the environment. Using the prediction
and observation update combination, position estimation for



Fig. 7. Clustering process result. Three objects of different size are founded.

each object is computed. In the following we explain the
components of our tracking module.

A. Data Association

This step consists of assigning new objects of fused list to
the existing tracks. Since in the current work we are concerned
with many objects moving in different directions: they may
be crossing or wating to cross in a direction perpendicular to
the oncoming vehicles, for example a vehicle waiting to turn
left etc. We have used MHT [14] approach to solve the data
association problem. To further control the growth of tracks
trees we need to use some pruning technique. We have chosen
the N-Scans pruning technique to keep the track trees to a limit
of N.

B. Track Management

In this step tracks are confirmed, deleted or created using
the m-best hypotheses resulting from the data association step.
New tracks are created if a new track creation hypothesis
appears in the m-best hypothesis. A newly created track is
confirmed if it is updated by objects detected in current frames
after a variable number of algorithm steps (one step if the
object was detected by both laser and stereo vision otherwise
in three steps). This implies that the spurious measurements
which can be detected as objects in the first step of our
method are never confirmed. To deal with non-detection cases,
if a non-detection hypothesis appear (which can appear for
instance when an object is occluded by an other one) tracks
having no new associated objects are updated according to
their last associated objects and for them next filtering stage
becomes a simple prediction. In this way a track is deleted if
it is not updated by a detected object for a given number of
steps.

C. Filtering

Since there may be different types of objects (vehicles,
motor bikes, pedestrains etc) moving in different directions

using different motion modes, a single motion model based
filtering technique is not sufficient. To address the tracking
problem, we have used an on-line adapting version of Interact-
ing Multiple Models (IMM) filtering technique. The details of
this technique can be found in our other published work [15].
We have seen that four motion models (constant velocity,
constant acceleration, left turn and right turn) are sufficient
to successfully track objects. We use four Kalman filters
to handle these motion models. Finally the most probable
trajectories are copmuted by taking the most probable branche
and we select one unique hypothesis for one track tree.

D. Tracking Output

The output of tracking process consists of position and
velocity information of ego vehicle alongwith a list of tracks.
A track is a moving object with its position, orientation and
velocity information as well as a reference to its instance in
the previous frame.

VI. EXPERIMENTAL RESULTS

Several real datasets were taken as input for the proposed
method. These datasets include highway, rural, and urban
scenarios. The objectives of the experiments are to show if
using evidential fusion at detection level, from several sensors
we can obtain a better representation of the environment, this
means a reduction of false alarms and miss detections.

A. Experiments setup

Regarding the scheme showed by figure 5 the experimental
architecture is composed of two sensors: camera and radar.
Four post-processing modules use the information from the
sensors in order to supply four evidence sources to the fusion
method. Two of these modules are embedded in the sensor
and the other two are the vehicle and sensor detectors.

The size of the evidential grid is defined by the grid resolu-
tion, i.e. the number of cells per meter. For the experiments we
use a grid resolution of 8 cells per meter. Uncertainty values
for the fusion method were set experimentally.

B. Experimental results

Figures 8, 9, 10 show the results obtained by the proposed
fusion method after the clustering process is applied. A car
is represented by a green rectangle; its position uncertainty
is shown as a red circle; black blocks represent the area
which higher mass value is set in the occupy state; light
gray areas means higher values for ignorance states. Small
black squares without bounding shapes stand for pedestrians.
Individual evidential grids are shown as well in the bottom
of the image, from left to right: videoCAN, radar, vehicle
detector and pedestrian detector; the last one is the fusion
result before the clustering process. The displayed data in
figure 8 represents a highway scenario.

Most of the detected vehicles are obtained from the vehicle
detector and radar sensor. Both evidences support the occu-
pancy of these particular cells. VideoCAN just support one of
the detected objects and add evidence to the unknown state



Fig. 8. Fusion results from a highway scenario (left). Individual evidential
grids from the different sensors (bottom-right). Image of the current scenario
(top-right).

for the rest of the cells. We can see in this example that all
the objects of interest are detected.

In country-mile areas the information from sensors becomes
more noisy, radar targets are commonly false alarms. Using
evidence from the other sensors the fusion method can reduce
the number of false alarms. Figure 9 evinces how false alarms
are reduced after applying the proposed fusion method.

Fig. 9. Fusion results from a country road scenario (left). Individual evidential
grids from the different sensors (bottom-right). Image of the current scenario
(top-right).

An example over an urban area is shown in the figure 10.
Here one can see how several vehicles are detected and how
pedestrians interact in the scenario. Not all the vehicles in the
scenario are detected because of the lack or conflict in the
evidence provided by the sensors. For an ADAS the objects
of interest surrounding the system are a priority in order to
reason and take some actions, we can see that most of the near
vehicles, surrounding the demonstrator, are detected thanks to

the complementary evidence.

Fig. 10. Fusion results from an urban scenario (left). Individual evidential
grids from the different sensors (bottom-right). Image of the current scenario
(top-right).

Just one sensor provides information regarding pedestrian,
for this reason this information is not taken into account into
the fusion process hence it is passed directly to the output.

Within the interactiVE project the perception platform is
considered to be real time if its processing time does not
exceed 200ms. Average results show, empirically, that the
proposed FOP approach suits the real time requirement usually
attached to ADAS applications.

Results can be improved using information from beam-
based sensors that could allow to have more particular evi-
dence from points not covered, resumed from high-level data
or help in conflict situations. Laser sensors might provide in-
teresting evidence as input for the proposed method improving
the detection of vehicles and pedestrians.

Some videos showing our results
could be found at http://membres-
liglab.imag.fr/aycard/html/Demos/iv2012 fop.html

VII. CONCLUSIONS

In this paper, we detailed our software architecture for the
Frontal Object Perception of the european project Interactive.
This module uses radar and mono-vision to detect and track
moving objects. Moreover, a detection level fusion between
the two sensors, based on Dempster Shafer Theory, is done to
improve the detection.

Several experiments were conducted regarding three par-
ticular scenarios: highway, country side and urban areas. In
all the scenarios, most of the objects of interest were detected
and false alarms from individual post-processing modules were
reduced. Experiments shows as well that the proposed method
performs the Frontal Object Perception task in real time.

The two next steps are: the use of a laserscanner (see
figure 1) to detect and track moving objects [15] and fuse with



radar and mono-vision, and the add of classfication informa-
tion about moving objects like pedestrians, cars, bicycles, bus
and trucks.
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