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Abstract—In this paper, we present a framework based on
3D range data to solve the problem of simultaneous localization
and mapping (SLAM) with detection and tracking of moving
objects (DATMO) in dynamic environments. The basic idea is
to use an octree based Occupancy Grid representation to model
the dynamic environment surrounding the vehicle and to detect
moving objects based on inconsistencies between scans. The
proposed method for the discrimination between moving and
stationary objects without a priori knowledge of the targets
is the main contribution of this paper. Moreover, the detected
moving objects are classified and tracked using Global Nearest
Neighbor (GNN) technique. The proposed method can be used
in conjunction with any type of range sensors however we have
demonstrated it using the data acquired from a Velodyne HDL-
64E LIDAR sensor. The merit of our approach is that it allows
for an efficient three dimensional representation of a dynamic
environment with a minimum memory consumption, keeping
in view the enormous amount of information provided by 3D
range Sensors.

I. INTRODUCTION

The reliable perception of the surrounding environment
is a very important step for an intelligent vehicle. It is
usually divided into two subtasks: simultaneous localization
and mapping (SLAM) and detection and tracking of moving
objects (DATMO). The purpose of SLAM is to provide
the vehicle with a map consisting of static entities of the
environment while DATMO uses that map to detect and track
dynamic entities.

During the last few years, the advent of affordable
rangefinders has attracted a great amount of research in the
area of environment perception. Both SLAM and DATMO
are being nearly exclusively performed nowadays based on
the data acquired by 2D range sensors. These sensors scan
the environment along a plane within a limited viewing angle
thus the objects above or below this plane cannot be detected.
Recently, three-dimensional range scanners have been com-
mercially introduced which provide 3D point cloud instead
of 2D slice of the environment. Although there has been an
overwhelming amount of work on perception in 2D and 2.5D
but the problem of perception in 3D has been addressed by
comparatively fewer researchers yet. One of its main reasons
is the enormous amount of data provided by 3D sensors.
The amount of data in a single scan of 3D sensor is usually
several times larger than that of a 2D scan. Fig. 1 is a typical
illustration of this. It is showing the point cloud generated by
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Fig. 1. An illustration of the raw data provided by the high definition lidar
sensor of Velodyne.

a single scan of the Velodyne' HDL 64E lidar which consists
of approximately 100,000 points. Therefore, the processing
of this data requires efficient algorithms and data structures.
In addition, the extraction and interpretation of geometry of
3D range data is very complicated in comparison to 2D.
Another problem related to 3D laser data is that the lower
layers of the scanner usually perceive the ground or floor
(Fig. 1) which makes the interpretation of data a lot more
complex. This is not usually an issue with 2D laser data other
than the rare case of being on a steep slope.

A number of approaches are available in literature for
solving SLAM and DATMO problem using 2D laser
scanners[4][13][12]. Most of these use the grid maps, spe-
cially a well-established mapping technique of occupancy
grid algorithm [2], to represent the environment. The noise
in the perception of the sensor together with the size of the
environment to be mapped makes mapping a hard problem.
Mapping of 3D outdoor environments makes this problem
even harder by increasing the size of the grids tremendously.
It was demonstrated in some early works such as [6] and [10]
which proposed to model the environment using rigid grid of
cubic volumes of equal size (voxels). These implementations
are not tractable in realtime and cannot be used for DATMO.
An optimized solution using multi-level surface maps was
proposed in [11] for outdoor environment mapping and
detection of moving objects. It implements an efficient data
structure using a 2D projection of the 3D space for outdoor
mapping. This means that the useful detail of 3D input
space is compromised by reducing it to a 2D map used for
representing the environment and detecting motion.

Another classical approach is to perform mapping using
point clouds to avoid the discretization of the environment.
It is successfully used in [1] and [7] for 3D mapping of
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outdoor environment. Despite being a good representation,
it only provides information about the occupied areas and
not the free or unknown areas. Therefore it cannot be used
for detection and tracking of moving objects. Previously, the
moving object detection problem has been solved by addition
of vision sensors [14] but visual classification does not help
to distinguish moving vehicles from stationary.

An optimization of the 3D grid is possible by using a
tree-based approach such as octrees. An octree is a tree
data structure in which each internal node has exactly eight
children. Octrees are used to partition a three dimensional
space by recursively subdividing it into eight octants. It
was first used in [5] for modeling. Recently, it has been
used in several works [3][8][15] for adapting occupancy
grid mapping from 2D to 3D but, to our knowledge, it has
never been used for detection and tracking of moving objects
before this work. In this work, we have used the octree-based
3D mapping approach described in [15] for mapping of the
environment.

This paper presents a framework based on 3D range data
to solve the problem of SLAM and DATMO in dynamic
environments. The basic idea is to use an octree based Occu-
pancy Grid representation to model the dynamic environment
surrounding the vehicle and to detect moving objects based
on inconsistencies between scans. The major contribution
of this work is the discrimination between moving and
stationary objects without a priori knowledge of the targets.
Second, detected moving objects are classified and tracked
using Global Nearest Neighbor (GNN) [9] technique. The
proposed method is not restricted to a particular sensor and
it can be used in conjunction with any type of range sensors
however we have demonstrated it using the data acquired
from a Velodyne HDL-64E LIDAR. The merit of our ap-
proach is that it allows for an efficient three dimensional
representation of a dynamic environment with a minimum
memory consumption, keeping in view the enormous amount
of information provided by 3D range sensors.

This paper is organized as follows. In the next section,
we summarize the technique that we have used for three
dimensional mapping of the environment. In section III,
we detail our approach for detection, classification and
tracking of moving objects. Experimental results are given
in section IV. Section V concludes this paper and provides
a perspective for future research in this area.

II. SIMULTANEOUS LOCALIZATION AND
MAPPING

The main contribution of this work lies in the detection,
classification and tracking of moving objects (DATMO).
For a reliable and efficient DATMO, a good and efficient
representation of the environment is extremely necessary. For
3D mapping of the environment, we have used the octree
based 3D occupancy grid approach presented in [15]. The
main attraction of this approach is to represent full 3D maps
in which free and unknown areas are explicitly modeled.
The tree-based implementation provides maximum flexibility
regarding the area and resolution of the map. The occupancy

is estimated probabilistically which copes with the sensor
noise. The localization of the vehicle is performed by an
integrated navigation system (INS) consisting of GPS, wheel
speed sensors and inertial measurement unit (IMU). This unit
provides the 6D pose, denoting the rear axis of the vehicle,
which is then used for calculating the tranformations between
the scans.

Fig. 2. Recursive subdivision of a cube into octants and the corresponding
octree.

An octree is a tree data structure in which each internal
node has exactly eight children. Octrees are used to partition
a three dimensional space by recursively subdividing it into
eight octants or cubic volumes (called voxels), as shown in
Fig. 2. This subdivision continues until a desired minimum
voxel size is reached which determines the resolution of the
octree. Being a hierarchical data structure, the tree can be
cut at any level to obtain a coarser subdivision. Here, the
octree is used to model occupancy of a volume based on
the sensor measurements. If a certain volume is measured as
occupied, the corresponding node in the octree is initialized.
Any uninitialized node could possibly be free or unknown in
this boolean setting. To resolve this ambiguity, free voxels
are explicitly represented as free nodes in the tree.

The probability P(n|z1.;) of a leaf node n being occupied
given the sensor measurements 21.; is estimated according to
the following equation:

1—P(n|z) 1 — P(nlz1:4-1) o

P(n|z) P(n|z1:4-1)

P(n)

P(n|z1;t) = 1+ 1 P(?’L)

(1

Assuming a uniform prior distribution (P(n) = 0.5) and

by using the logOdds(L) notation, Eq. 1 can be simplified
to the following equation:

L(n[z14) = L(n|z1:0-1) + L(n|2) @)

This formulation allows for faster updates in case of pre-
computed sensor models. Here L(n|z;) is the inverse sensor
model which is specific to the sensor used for mapping. In
case of the laser sensor, a beam-based inverse sensor model is
employed. A ray-tracing operation is performed to efficiently
calculate the volumes to be updated using the following
model:

, if ray is reflected within volume
, if ray traversed the volume
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Furthermore, the clamping update policy proposed in [16]
is used to ensure that the confidence in the map remains



bounded. Thus, using the upper and lower bound of l,,4,
and l,,in, the logOdds(L) is calculated by:

L(n|z1.¢+) = max(min(L(n|z1..—1) + L(n|2t), linaz), lmin)
“)
Whenever the logOdds value of a node reaches either the
threshold {min or lmax, it is considered to be stable, and
thus measured free or occupied with high confidence. If all
children of a node are stable leafs with the same occupancy
state, then they can be pruned leading to a considerable
reduction in the total number of nodes.

III. DETECTION, CLASSIFICATION AND
TRACKING OF MOVING OBIJECTS

In this section, we describe our approach for the detection
of moving objects from the octree map presented in previous
section. We also summarize the method used for classifica-
tion and tracking of the detected moving objects.

A. Detection of Moving Objects

After construction of a consistent local map of the envi-
ronment, moving objects can be detected when new mea-
surements arrive. The principal idea of our appraoch for the
hypothesis of a moving object is based on the inconsistencies
between observed free space and occupied space in the
local grid map. This method borrows idea from background-
subtraction methods in computer vision. Our process for the
detection of moving objects is carried out in two steps:
detection of dynamic voxels and their segmentation into
individual dynamic objects.

The first step is to detect the voxels that might be contain-
ing measurements obtained from dynamic objects. This can
be considered as a background modeling process. In this step,
we first construct a 3D occupancy grid map incrementally
from laser measurements as explained in previous section.
Based on the constructed grid map, we are able to make a
hypothesis about the voxels of the grid occupied by moving
objects when new measurements arrive. For this, we maintain
a list of the voxles whose states are inconsistent between the
current and previous scan.

Let S;—; and S; be the states of a voxel in previous
scan and current scan respectively. If the transition between
these two states for a specific voxel of the grid is such
that S;_1 = free and S; = occupied then this is the
case when an object is detected on a location previously
seen as free space and it is possibly a moving object. We
add it to the list of possible dynamic voxels. In contrary, if
Si_1 = occupied and Sy = free, it means that the location
which was previously being observed as occupied is free
now. This can possibly be caused by a missed detection by
the sensor or it was a voxel occupied by a dynamic object
which may have displaced now. We search this voxel in our
list of dynamic voxels maintained from previous scans. If it
is found, we wait for the next few scans instead of removing
it from the dynamic voxels list immediately. If it is observed
as free in next scans as well, then we delete it from the list.

If S;_1 = occupied and S; = occupied, it means that
an object is observed on a location previously occupied
then it probably is static. If an object appears at a location
which was previously unobserved, then we can say nothing
about that object. For such measurements, a priori we will
suppose that they are static until latter evidences come.
As a result of this step, all the inconsistencies between
the two measurements are identified as dynamic voxels.
These include a large number of sparsely situated voxels
generated as a noise. This issue is resolved in the subsequent
processing.

Once we have maintained the list of all possible dynamic
voxels, the next step consists of the segmentation of detected
dynamic measurements into regions. It is carried out by
clustering these dynamic voxels into seperate groups where
each group represents a single object. The criterion used for
deciding whether the voxels belong to the same cluster is the
Euclidean distance between their centers.

We can intuitively expect that all voxels belonging to
a specific cluster are neighboring or atleast spatially very
close to each other. Thus, we do not require to exhaustively
compare the voxels pairwise to check whether they belong
to a cluster or not. The clustering can be performed using
an approach similar to a region-growing algorithm. In this
approach, we examine the neighboring voxels of initial “seed
point” voxel and determine whether the neighbors should be
added to the region or not.

As described above, all possible dynamic voxels are stored
in a data list. Our clustering algorithm starts with stepping
through this list. A voxel is defined by the position of its
center and the length of its side. If the current voxel in
the list is not yet assigned to any cluster, a new cluster is
initialized. We find the set Neighbor(v) of its neighboring
voxels from the list. As criterion for adding a voxel to the
cluster, we use the Euclidean distance between the center
of the current voxel and the voxel in consideration. If this
criterion is satisfied by the current voxel then it is added to
the cluster. Now, we use this newly added voxel further and
continue the search within its neighborhood in a recursive
manner.

At the end, we apply a density threshold on the cluster to
check if it has sufficient number of voxels to be identified as
a moving object. A cluster which has the number of voxels
fewer than this threshold is ignored and its corresponding
voxels are removed from the list. In this way, we get rid of
the false alarms and spurious elements in the environment
which were wrongly identified as dynamic object voxels.
The remaining dynamic voxels in the list have a higher
probabliity of corresponding to moving objects which is
further improved in the next section of classification. This
reduces the number of detected voxels by a large amount.

Fig. 3 is an illustration to explain the two steps described
above for the detection of moving objects. The leftmost
image gives the point cloud corresponding to a situation
where the vehicle is moving on the road having dynamic
objects around it. The local static map of the environment is
incrementally constructed from these point clouds after each



Fig. 3. An illustration of detection of moving objects from inconsistencies
between scans and the results of clustering. See text for more details.

scan. The image in the center shows the voxels for dynamic
object hypothesis detected on the base of the inconsistencies
between the scans displayed in red. Here you can see the
amount of noise detected as the sparse red points. The image
on the right is the result of clustering of the dynamic voxels.
Applying an appropriate threshold has eliminated quite a
large number of wrongly detected dynamic voxels. But still,
there remain some clusters which do no belong to dynamic
objects. Those will be handled in the next step.

After detection of moving objects, the next step is to
track them in order to estimate their states and predict their
behaviors in the future. Tracking multiple moving objects is
a classical problem in 2D. In the general case this problem
is very hard, however it has been shown experimentally
that simple methods are good enough to cope with urban
scenarios. Classification of the dynamic objects has also
proved to play a great role in improving the results of
tracking. In our current work, we have initiated with the
implementation of a simple object classification technique
based on bounding box along with an object tracking scheme
using Global Nearest Neighborhood (GNN) data association
and Kalman filter to track detected objects in 3D.

B. Classification of Moving Objects

The classification of moving objects (specifically pedes-
trians, bicycles, vehicles etc) is of utmost importance for
an intelligent vehicle. In recent years, considerable progress
has been made in this field through supervised classification
methods. A variety of approaches have been developed in
this context but they require a sufficiently large number of
training examples to ensure good performance in the test
phase. For now, we have used only a simple technique for
the classification of moving objects based on the bounding
box.

The idea is to identify and track a cluster of dynamic cells
provided by the previous step and fix a 3D bounding box to
it. This bounding box is calculated for connected components
of moving objects in 3D space. The classification is done
based on the properties of these boxes such as the ratio
between their length, width and height. A benefit of this
method is that it is highly time efficient as compared to
any complex classification technique and it works well for
small numbers of moving objects. Its shortcoming is that
the problem of occlusion cannot be solved properly with
this approach in cluttered situations. Grouped regions for

spatially close objects will form a combined blob. As a result,
they will be wrongly identified as a single object and cause
tracking errors. However, the results of tracking are still
improved by using this simple classification technique which
promises the potential for the feature-based classification.

As demonstrated in Fig. 4, the classes of the objects are
identified on the base of their respective bounding boxes,
which are further used to track these objects. Each cluster
created in the previous step is used as a hypothesis for a
dynamic object and to calculate the bounding box corre-
sponding to it. Classification is then performed on the basis
of the properties of each bounding box. A simple case, that
we have experimented with, is the use of ratio between
length, width and height of the bounding box as an indicator
for its class. We have defined these parameters for the classes
of car, bus/truck, bicycle/motorbike and pedestrian. For this
step, we start with the results of clustering obtained from
the previous step, as shown in the leftmost image of Fig. 4.
The image in the center shows ths bounding boxes calculated
for each cluster. The four small objects shown in this image
do not fall in any of the defined classes therefore they are
removed. The bounding box classification has identified two
moving objects in the scene, namely a car and a bike or
motorbike. The object which was identified as a motorbike
did not appear in the next scans therefore it was assumed
to be a wrong detection. It was discarded with the help of
tracking.
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Fig. 4. An illustration of bounding-box based classification and tracking
of moving objects. See text for more details.

C. Tracking of Moving Objects

The detected dynamic objects need to be tracked. The
tracking of multiple moving objects is a complex problem
which is generally divided into two parts: filtering and data
association. Filtering is the sequential estimation of the state
of a dynamic object. It is usually performed using Bayesian
filters which require a specific motion model for tracked
objects to predict their positions in environment. After pre-
dicting the positions of existing tracks, next we perform data
association to assign the observations to the existing tracks.
The first step in data association is to perform gating to find
the likely observations to be associated with the existing
tracks. We have used the fastest and simplest technique
for data association called Global Nearest Neighbor (GNN).
An important optimization that we have achieved in this
step is related to the classification information provided by
the previous step. While finding possible nearnest neighbor



association between a track and an observation, we ignore
all the associations which consist of objects from different
classes. For instance, if the nearest neighbor of an obser-
vation classified as a pedestrian is found to be a track
corresponding to a vehicle, we ignore that and search for
the next nearest neighbor within the specified gate.

After applying GNN, the observations that are not associ-
ated to any of the existing tracks can possibly be the potential
candidates for new tracks or the false alarms. We create a
new track for each of these unused observations but those
tracks are not confirmed yet. If those newly created tracks
get associated to the observations for next consecutive scans
then those are marked as confirmed object tracks. In the other
case, those observations are assumed to be false alarms and
are suppressed subsequently. Similar to the track creation
mechanism, a track deletion or suppression mechanism is
also implemented in our technique. If at any stage, we find
no observation associated to a track, we mark it as not
observed. We predict the position of the object from its
previous observations. This predicted position is considered
to be the current position of that object. This deals with the
cases when the object is temporarily occluded. If the object
is not observed for next consecutive scans, we assume that it
has moved out of the scanning area and its track is deleted.

IV. EXPERIMENTAL RESULTS

To verify the analysis and efficiency of the proposed
method, it was tested on the real data acquired by a Velodyne
HDL-64 High Definition Lidar scanner mounted on top of
an experimental vehicle. It consists of a column of 64 single
lasers, covering a pitch range of approximately 26 degrees. It
rotates at a rate of 10 Hz sweeping the complete horizontal
ground plane and producing 180000 points per turn. We have
evaluated the proposed algorithm for different scans acquired
by this sensor in inner city traffic scenes. There is no ground
truth information available yet, therefore we have performed
a qualitative evaluation of the performance.

The results of detection of dynamic objects with their
classification and tracking are shown in Fig. 5. This is a
relatively complex scenario with the vehicle in a crowded
urban environment having a number of moving objects
around it. The amount of the noise generated by the sensor is
also very large. The two images in the second row show that
the detection and clustering steps have done a segmentation
of the dynamic objects good enough to be used in the next
steps of classification and tracking.

The results of classification and tracking are demonstrated
in the two images at the bottom of Fig. 5. The classes of
the objects are identified on the base of their respective
bounding boxes. Each cluster created in the previous step
is used to caluculate the bounding box corresponding to it.
Then the ratio between the length, width and height of each
bounding box is used to perform the classification of the
objects. For instance, if the bounding box of an object has
the length very large as compared to its width, then it is
less likely to be a vehicle and more likely to be a bicycle or
motorbike. Similary, for a pedestrian, both width and legth
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Fig. 6. A group of pedestrians is detected as a single object hence it cannot
be classified correctly using the bouding box based classification.

of the bounding box should be very small as compared to
the height.

The results obtained from the application of the proposed
technique on the real data collected from an urban road
scenario show that the moving objects are clearly and ef-
ficiently segmented from the environment despite a consid-
erable amount of noise. The spurious elements are further
minimized by use of classification and tracking. This results
in an efficient and reliable representation of the dynamic
environment in 3D. More results and videos can be found at
http://membres-liglab.imag.fr/aycard/html/Demos/iv2012/.

V. CONCLUSION AND FUTURE WORK

We have presented an approach capable of performing
detection, classification and tracking of moving objects from
3D range data. Experimental results have shown that our
system can successfully perform the moving object tracking
from a vehicle in different dynamic outdoor scenarios. The
proposed approach uses an octree based occupancy grid map-
ping of the environment in 3D. After a map is built for each
scan, moving objects are detected from the inconsistencies
between this map and that of the previous scan.

For this work, we have performed a naive classification of
the moving objects using bounding box. It is a time efficient
technique with good performance in less cluttered situations
but it has its limitations in cluttered environments. For
instance, it cannot identify a group of pedestrians walking
together as illustrated in Fig. 6. The detection and clustering
step gives a single cluster corresponding to such a group due
to the spatial proximity of the pedestrians. Thus calculating
the bounding box results in an undefined class. Using a
machine learning technique for feature-based classification
can prove better in such scenarios. Therefore, the future
works include augmentation of our approach by using such
a technique for classification alongwith a more robust data
association technique for tracking of multiple objects in
cluttered environments.
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