3D mapping of outdoor environment using clustering techniques
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Abstract— The goal of mapping is to build a map of the en-
vironment using raw data provided by some sensors embedded
on an intelligent vehicle. This map is used by an intelligent
vehicle to have knowledge about its surrounding environment
to better plan its future actions.

In this paper, we present a method, based on occupancy
grids [3], to map 3D environment. In this method, we dis-
cretize the environment in cells and the shape of each cell is
approximated by one or several gaussians in order to achieve
a balance between representational complexity and accuracy.
Experimental results on 3D real outdoor data provided by a
lidar are shown: a map of an urban environment is presented.
Moreover a quantitative comparison of our method with state
of the art methods is presented to show the interest of the
method.
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I. INTRODUCTION

An intelligent vehicle is generally defined as a vehicle
designed to help driving automatically or to monitor a human
driver and assist him in driving. To solve these tasks, they
are equipped with sensors to perceive their surrounding
environment and with actuators to act in this environment. To
make the link between sensors and actuators, an intelligent
vehicule generally requires 3 fundamental components: i)
perceive and model the environnement where it is moving,
ii) reason and decide about future actions to execute iii)
and finally perform these actions. Perception plays a fun-
damental role in construction of an intelligent vehicle as
it constitutes its first component and provides informations
to other components. Its objective is to interpret noisy and
raw data of different sensors embedded on a vehicle to
model environment (ie, build a map of the environment) and
understand the current situation in order to provide necessary
informations to decide future actions to execute. The quality
of perception processing has an impact on the quality of the
whole process.

The choice of map representation is an important step
when dealing with the perception problem. Popular methods
for representing maps of the environment include: feature-
based approach [5], grid-based approach [3] and direct ap-
proach [7]. Because of advantages over others, nowadays, oc-
cupancy grids have become the most common choice among
map representation methods, particular for applications in
outdoor environments [8]: whereas grid-based approaches
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Fig. 1. Example of grid map representation.

typically require an important amount of memory, but they
are able to represent arbitrary features and provide detailed
representations. In this representation, the environment is
subdivided into a regular array or a grid of rectangular cells.
In addition to this discretization of space, a probabilistic
measure of occupancy is estimated for each cell of the grid
which indicate that the cell is occupied by an obstacle or not
given the raw data provided by the sensors. An example of an
occupancy grid map representation, built using 2D raw laser
data is shown in figure 1, where white regions correspond to
free cells, black regions to occupied cells and grey regions
to unknown cells.

The resolution of the environment representation directly
depends on the size of the cells. The idea of producing multi-
resolution grids has been present since the very first works
on grid-based representations [3]. Coarse grids are used in
path planning [9] or localization [10] algorithms in order
to obtain a rough trajectory or position estimate at a low
computational cost. Then, at a second stage, this estimate
is used to initialize the fine resolution search algorithms,
thus accelerating convergence. However, as the resolution
becomes coarser, the aliasing effect of the geometry of the
cells becomes more evident and it can no longer be neglected.
When considering a cell as a full block, all the information
concerning the shape of the cell contents is lost. A way to
alleviate this problem is to attach some sort of statistical
shape description to every occupied cell. [1] significantly
improves accuracy by approximating the shape of the cell
contents with ellipsoids. But a single ellipsoid is still a poor
representation when there are several objects with different



orientations in the cell, which is the case —for instance— of
a pole standing on the ground (see fig. 2).

In this paper, we present a method to overcome this
problem by allowing a coarse resolution cell to contain
multiple ellipsoids — more specifically, Gaussian clusters.
The idea is to start with a single cluster per cell, and then to
refine it by inserting additional clusters in order to achieve a
balance between representational complexity and accuracy.

In next section, we present our new map representation and
our approach to overcome limitations of classical methods:
multi-resolution gaussian maps. In section III, we explain
how to update a multi-scale gaussian map given a set of
raw data. Section IV presents our refinement algorithm to
improve the quality of the representation at coarse levels.
This step is our main contribution, at every refinement step
new Gaussian clusters are added to the cells where the
representation error is maximum. Experimental results on
real 3D laserscanner raw data are reported in section V.
Section VI gives some conclusion and perspectives to this
work.

II. MAP REPRESENTATION & APPROACH OVERVIEW

In this paper, we are concerned with mapping of 3D static
outdoor environment. The perception of the environment
is done by a 3D laserscanner embedded on an intelligent
vehicle moving in this 3D static outdoor environment. The
laserscanner perceives, with a frequence of about 20 hertz,
a part of the environment depending on its field of view
and the position of the intelligent vehicle. A perception of
the laserscanner is composed of a set of 3D points: each 3D
point (X, y, z) corresponds to a static part of the environment.

The size of the environment (and the corresponding grid
as well) is given apriori and each time the 3D laserscanner is
performing an acquisition of a set of 3D raw data, we update
our multi-resolution gaussian map. Actually, it is composed
of 3 independent grids with different resolutions. The size
of cell at each resolution is given apriori and the number
of cells for each resolution depends on these resolutions.
Our approach processes every resolution independently. Each
resolution is a sparse grid where only occupied cells are
stored. A sparse grid is encoded using a special hash table:
each occupied cell is indexed by a key built upon its integer
coordinates inside the grid. Basically, the grid is seen as a
3-D array, and like for a matrix, an unique integer can be
associated to a cell (4, j, k):

key=k+wx*xj+hxwxi

where w and h are the number of cells in the width and the
height of the grid. This supposes that the grid is contained
inside a bounding box with dimensions (hs,ws,ds) where
d is the number of cells in the depth of the grid and s is the
cell size in meters. Thus for each real point, one compute
the 3-D coordinates of its cell, then the key of the cell in the
hash table.

A cell is represented by one or more gaussian: in the fine
resolution there is only one gaussian per cell and in coarser
resolutions, a cell can contain several gaussians.

Figure 2 gives an illustration of our map representation
for a 3D simulated scene with only one gaussian per cell.

As shown in Fig. 3, the approach is composed of three
main components:
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Fig. 3. Framework components.

1) 3D laser raw data acquisition: this is the first step of
the process. It consists of collecting 3D laser raw data
used by the next parts of the process;

2) Map Update: this step is composed of two parts:

e Occupancy Update: it is the likelihood that a
cluster represents a static part of the map. In our
framework it allows to adapt faster the regions that
have not been observed often;

o Gaussian Update: it adapts existing clusters in
order to minimize the representation error.

3) Map refinement: this step is our main contribution, at
every refinement step new Gaussian clusters are added
to the cells where the representation error is maximum.
In particular, from now on, we will assume that there is
a given budget of Gaussians per resolution (except the
fine one) that needs to be allocated in an optimal way
through a refinement process. It is worth noting that
no refinement is performed on the finest resolution.

Light gray boxes are processed less than once per acqui-

sition of 3D laserscanner raw data. These part of the process
usually takes time to proceed and moreover there is no need
to process them at each time. In our framework, these light
gray boxes are processed after a given number of acquistion.
This given number is defined apriori at the beginning of the
process.

III. MAP UPDATE

This section presents the procedure to update an existing
map from 3D laser raw sensor data. At this point, we assume
that the number %k of Gaussian clusters per cell is known. The
actual estimation of k is handled by the refinement algorithm
that we will discuss in section IV.

Our goal here is to update the Gaussians’ mean value p
and covariance X in order to minimize the representation
error with respect to the input data. Every observation is
used to incrementally update the different resolutions inde-
pendently. The basic idea is to find the cell where the input
point falls and then updating the cluster in that cell that is
“closest” to the input point.

As in most incremental approaches, an important question
is how much to adapt the clusters — i.e. finding the ’right’
learning rate. In the following subsection, we describe the
use of the cluster’s occupancy to control the adaptation. It
can be intuitively explained as follows: the more a cluster
has been observed, the more is known about it and the less



Fig. 2. Top left: 3D simulated scene. Top right: fine resolution of the refined map. Bottom left: intermediate resolution of the refined map. Bottom right:

coarse resolution of the refined map

reasonable it is to modify it. So, this adaptation depends on
the occupancy of a cluster. In next subsection, we describe
how this occupancy is computed for a point and a cluster.
Furthermore if the cluster violate visibility, i.e. one sees
through that cluster in some observation, this cluster is very
likely to have represented a moving obstacle (a parked car
for instance). Thus we want to decrease its occupancy in
such a case.

A. Computing Cluster Occupancy

We can split that problem in two steps: the increment
of occupancy for observed clusters and the decrement of
occupancy for clusters that have been seen through. The
increment of occupancy is straightforward and is done during
the update of the cells that contain an observation. For the
second step, we use the 3-D Bresenham algorithm [4] that
traverses all the cells that are seen through and decreases the
occupancy of the clusters they may contain.

B. Updating Gaussian Clusters from Data

For every observation, a single cluster per resolution will
be updated. The cluster is selected by finding the cell that
contains the observation and then finding the cluster having
the minimum distance to that point.

Once the cluster has been selected, its parameters are
updated by means of a stochastic gradient descent algorithm.
The principle is to update the cluster by a fraction of
the negative gradient with respect to each observation. As
more and more samples are processed, the magnitude of the
adaptation should decrease to ensure convergence. A good
example is the on-line computation of the sample mean:

un — /,Ln_l 4 %(Zn _ Hn—l)
where n represents the number of samples processed so far,
and z" — ™! can be understood as the negative gradient,
and % the fraction of the gradient to be taken into account.
This decreasing weight is called the learning rate and is noted
€. In our approach, the value of € depends on the occupancy,
as described in section III-C.

In the case of points, a distance metric between a point
and a Gaussian should be used. We have chosen to use the
probability measure given by (1):

d(p,w) £ =[(p — w) Zw (P — pw)

+ log (det(Zw))] ,

This distance is the addition of the Mahalanobis distance and
a volume term. Compared to the pure Mahalanobis distance,
the volume term aims at compensating the fact that the
Mahalanobis distance of a big cluster tends to make every
point very close.

N | =
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C. Learning Rate

Our idea is to define the learning rate from the occupancy:
the higher the occupancy of a cluster, the better the accuracy
of its position and shape is supposed to be; thus, a small value
of e should be used. If, on the other hand, the occupancy is
low, the current estimated state of the reference vector can be
assumed to be based on insufficient statistics and the learning
rate should be high to permit the reference vector to adapt
itself.

In log-ratio the occupancy typically is bounded
in [—Omax;Omax] and the learning rate varies within



[Emin; €max]. For our approach we have chosen a linear
mapping between both values:

E(O) _ €min — 6max(

9 o0+ Omax) + €max - (2)
Omax

IV. MAP REFINEMENT

The idea is to start with a single gaussian per cell, and
then to refine it by inserting additional gaussian clusters in
order to achieve a balance between representational com-
plexity and accuracy. This refinement is only performed for
intermediate and coarse resolution. We aim at adding clusters
only in those regions where the Gaussian shapes have already
converged to their final shapes, which can be deduced from
its occupancy. Accordingly, we choose to refine a cell ¢ only
if its occupancy probability is above 0.5. In particular, from
now on, we will assume that there is a given budget of
Gaussians per resolution that needs to be allocated in an
optimal way through a refinement process. The refinement
process is driven by a measure of the representation error.
The map is periodically refined by inserting a new cluster in
the cell that has the maximum error. After every insertion,
the shape of the other clusters in the same cell should be
modified accordingly; this is done by running a clustering
algorithm using the cells of the finer resolution as input.

The following subsections provide the details of the re-
finement algorithm: the error metric used to find where to
add a new gaussian cluster is introduced in next subsection
and secondly we present the clustering algorithm.

A. Error Computation

To find the cell to refine, we compute an error value per
cell for the intermediate and coarse resolution. For a given
cell, this value is basically the sum of errors between each
coarse or intermediate gaussian and the corresponding fine
gaussians. So for a given cell, the value is the sum of errors
of each coarse or intermediate gaussian. More formally, this
value is the sum of the Mahalanobis distance between the
center of each gaussian cluster and the Gaussian clusters of
the finer resolution.

For the cells ¢ of the coarse or intermediate resolution,
having reference gaussian clusters {wq,...,wx} and the
finest corresponding gaussians: {z1,...,zy}, we compute
the average distance £(c) of each gaussian to its closest
gaussian reference at the finest resolution:

1 k N
NZZ 1—ez 5wy, z5)

[(Bw, — uzj) 7, (B, = Bg,)]

where §(w;,z;) is one if w; is the closest reference vector
to z; using the Mahalanobis distance defined by z; and zero
otherwise. The occupancy is used through the learning rate
€z, to assign higher error weights to occupied clusters, disre-
garding those whose occupancy is low and, in consequence,
whose accuracy may still improve without the need of adding
extra clusters.
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Fig. 4. Up: fine scale is colored with the magnitude of the contribution to
the error at the coarser scale. Down: coarse scale, mean error. Error palettes
are on the right.

Figure 4 illustrates the error computed for each cell of the
coarse resolution at the beginning of the refinement process
where at the coarse resolution, we only have one gaussian per
cell. The top of the figure represents the contribution of each
cell of the fine resolution to the error of the corresponding
coarse cell. Most of cells at fine resolution have a small
contribution to the error: because at this level, the gaussian
is usually a good approximation of corresponding data. The
most important error (shown by yellow and red colors) is due
to the stairs which are not very well modelized by gaussians.
At the coarse level, we see that using only one gaussian
per cell gives very poor approximation. For instance, the
gaussian in red is a very poor approximation of the real data
(see top left figure 2): a part of stairs and a part of one pole
and one background wall. In this case, the first refinement
process will add one gaussian in this cell.

B. Clustering for Map Refinement

In this section, we describe our clustering approach for
map refinement. This method solves a hard clustering prob-
lem: we are looking for a partiton C* = {C{,...,C}}
of the k gaussian clusters of a given cell ¢ into %k classes
represented by k reference vectors {wy,..., Wk }.

This is done by using the well known k-means clustering
algorithm [6]. The optimal clusters are computed iteratively
from the set of reference vectors : each datum is associated
to its closest reference vector; then, the minimizer of each
cluster energy is computed.

In the next two paragraphs, we explain the distance we
choose for our specific problem and we detail how we deal
with the problem of initialization and local minima.

1) K-Means Extension for Gaussian Inputs: In the basic
Lloyd algorithm, both input data and reference vectors are
simply points (3-D points in our case) and the distance
function is the square Euclidean distance. In order for the
covariance matrices of the clusters at the coarse or interme-
diate resolution to be as accurate as possible, we need to use
the information provided by the covariance matrices at the
finest resolution. Therefore, we need a clustering algorithm



that is able to properly handle Gaussian input data. [2] has
proposed such an algorithm, proving that it converges. The
algorithm uses the Kullback-Leibler divergence (Eq. 4) as a
distance function for Gaussians:

Dica(allw) = 5[0 — 1) S0 11, — 1)

det Xy, 1
where d is the dimension. The metric is composed of three
terms corresponding to the Mahalanobis distance, the volume
and the orientation, respectively.

The use of this metric in clustering means that the decision
of grouping clusters together does not only depend on their
positions, but also on their sizes and orientations. This
property is particularly important for mapping, since it will
tend to preserve sharp features such as corners and edges
because the distance between the linear components of such
features will increase with the angle difference between
them.

As explained in [2] the computation of the optimal refer-
ence vectors from a set of Gaussians {z; = (u,,;,%,;)|] =
1,...} weighted by positive reals (c,;), is done in two steps.
First the optimal mean is computed using (4):

*

1
H == azJ'IJ’z‘ ) (4)
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then the covariance matrix is given by (5):

7. Z azj (Ezj + ”ijIJ/zj) - (“*)TIJ’* ’ (5)

where the «; are the occupancy associated with each mea-
surement.

2) Initialization of K-Means: An important drawback of
k-means is that it is highly dependent on initialization.
Moreover, even if the algorithm is guaranteed to converge,
it often gets stuck in local minima.

To get out of the local minima a so called “swap”
procedure is used. One cluster is chosen, either randomly or
because of its short distance to a different cluster with more
elements. Then, a simulation is done by reallocating that
reference vector to the region of space with maximum error.
If the resulting partition has a lower clustering distortion, the
result is accepted and a new simulation is done. Otherwise,
the result is rejected and the procedure stops.

V. EXPERIMENTAL RESULTS
A. Data and Demonstrator

To test our approach, we had a cooperation with an indus-
trial partner to perform 3D Mapping of outdoor environment
using a laser scanner. We had a dataset of 6 Millions of laser
data collected with a vehicle moving moving in this urban
environment. The localization of the vehicle was provided.
A camera was also mounted on the vehicle and laser data
were synchronized with images. So, each laser data had 6

dimensions: X, y and z (for position) and RGB component
for color.

The problem was to propose a multi-resolution model of
this 6D dataset with high precision and significant reduction
of size. We build a multi-resolution gaussian map of 700
meters X 200 meters x 50 meters. This map was composed
of 3 resolutions: cells have a size of 20 centimeters for fine
resolution, 3.2 meters for intermediate resolution and 12.8
meters for coarse resolutions.

B. Experimental Results

With this dataset, we have experimented the use of the
color as an extra clustering dimension. In this case, the
points are gathered into a same cluster if they are close
in terms of location (ie, they produce the smallest possible
ellipsoid in the 3D space) and in terms of color (they make
the smallest ellipsoid in the uv color space). Figures V-B
presents our results at the fine resolution. With our approach,
we were able to obtain a reduce representation of less than
0.1% of the original data but nonetheless accurate. Moreover,
we can see in figure V-B that a significative distinction is
made between the object in the environment based upon the
color. In particular vegetation is well separated from artificial
structure.

Figure 6 shows the coarse resolution with one gaussian per
cell. This figure is used as a reference to compare it with our
approach. We clearly see that an approximation of the shape
by one gaussian is not appropriate: for instance, all the cells
along the road approximate the road and the buildings as
well. So, their shape and color is a mix between the shape
and color of these two independent parts of the environment.

On the contrary, figure 7 provides a very good approxima-
tion of the shape of the objects present inside the environ-
ment. We can see that we have a very good separation be-
tween road and buildings, moreover the color of the gaussian
corresponds to the color of the corresponding object. The
coarse resolution with one Gaussian per cell contains 5457
Gaussians and the number of Gaussians in the refined coarse
resolution is 42367. We added less than 8 Gaussians per cell
in average and were able to obtain a significant gain, in terms
of separation between objects. The large planar shapes of the
road are very well approximated by large Gaussians whereas
complicated shapes of the facades of the buildings and the
vegetation use more Gaussian. For path planing, for collision
detection, this representation allows to compute bounding
ellipsoids

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a comprehensive framework to build
three-dimensional maps from range data. The proposed rep-
resentation enhances the accuracy of previous approaches by
enabling the presence of several Gaussians per cell. These
Gaussians are added by means of a refinement algorithm
which inserts them where the representation error is maxi-
mum. The algorithm makes use of a recent Gaussian clus-
tering approach that uses the Kullback-Leibler divergence
as a distance function, thanks to this, our algorithm is



Fig. 5. fine resolution of 3D laser data and color
Fig. 6. coarse resolution with one Gaussian per cell
Fig. 7. coarse resolution with several Gaussians per cell

able to preserve important features of the environment (e.g.
corners) that are usually smoothed out by other approaches.
Experiments with real data show that, for coarse resolutions,
significant accuracy gains may be obtaining by a small
augmentation in the number of clusters. Moreover, when
compared with existing approaches, the additional computa-
tional cost that is required to insert these clusters is marginal.

Further work includes working towards real time mapping
of huge streams of 3-D points by exploiting parallelization
and hierarchical multi-scale update.
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