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Abstract—In this paper, we present an approach performing
object behavior classification embedded in a complex and efficient
perception method. This method, applied in dynamic outdoor
environments using a moving vehicle equipped with a laser
scanner, is composed of a local simultaneous localization and
mapping (SLAM) with detection and tracking of moving objects
(DATMO).

While the SLAM is performed by an implementation of
incremental scan matching method, the tracking if performed by
a Multiple Hypothesis Tracker (MHT) coupled with an adaptive
Interacting Multiple Models Filter (IMM). The -classification
process takes place in the filtering stage and is based on one
of the key parameters of the IMM filter which is the Transition
Probability Matrix (TPM) modeling objects motion transitions. It
permits to automatically classify object behavior and to reuse the
classification output to enhance the prediction step in the filtering
process.

The experimental results on datasets collected from a Daimler
Mercedes demonstrator in the framework of the European
Project PReVENT-ProFusion2 demonstrate the capacity of the
proposed algorithm.

Index Terms—QObject behavior classification, SLAM, DATMO,
TPM.

I. INTRODUCTION

Perceiving or understanding the environment surrounding of
a vehicle is a very important step in driving assistant systems
or autonomous vehicles. The task involves both simultaneous
localization and mapping (SLAM) and detection and tracking
of moving objects (DATMO). While SLAM provides the
vehicle with a map of static parts of the environment as well
as its location in the map, DATMO allows the vehicle being
aware of dynamic entities around, tracking them and predicting
their future behaviors. It is believed that if we are able to
accomplish both SLAM and DATMO in real time, we can
detect every critical situations to warn the driver in advance
and this will certainly improve driving safety and can prevent
traffic accidents.

In this context, we design and develop a generic architecture
to solve SLAM and DATMO in dynamic outdoor environ-
ments. This architecture has been used in the framework of the
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Fig. 1.

Architecture of our system

European project PReVENT-ProFusion! in cooperation with

Daimler [1] and Volvo [2] and is currently in the european
project Intersafe2” in cooperation with Volkswagen [3]. This
architecture (Fig. I) is divided into two main parts.

The first level of our architecture is dedicated to Environ-
ment Mapping & Localization and Moving Objects Detec-
tion [4]. For the SLAM problem, we use a maximum likelihood
approach to build a consistent local map using occupancy
grid and to localize the ego vehicle inside the map. After a
consistent local map has been constructed, moving objects can
be detected using inconsistencies between observed free space
and occupied space in the local grid map.

In the second part, the previously detected moving objects
are verified and tracked. This part is composed of four different
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modules to solve the problem of multi-objects tracking:

o The first one is the gating. In this part, taking as input
predictions from previous computed tracks, we compute
the set of new detected objects which can be associated
to each track.

e In a second part, using the result of the gating, we
perform objects to observations association and generate
association hypothesis, each observation corresponding to
a previously known moving object. Output is composed
of the computed set of association hypothesis.

o In the third part called objects management, objects are
confirmed, deleted or created according to the association
results and a pruned set of association hypothesis is
output.

o In the last part corresponding to the filtering step, esti-
mates are computed for ’surviving’ tracks and predictions
are performed to be used the next step of the algorithm.

As the quality of gating relies directly on the quality of
filtering and especially the prediction step, we have chosen
Interacting Multiple Models (IMM) [5] to deal with motion
uncertainties in this filtering part. The IMM approach over-
comes the difficulty due to motion uncertainty by using more
than one motion model. The principle is to assume a set of
models as possible candidates of the true displacement mode
of the target at one time. To do so, a bank of elemental
filters is ran at each time, each corresponding to a specific
motion model, and the final state estimation is obtained by
merging the results of all elemental filters. Also, the probability
the target changes of displacement mode is encoded in a
transition probability matrix(TPM), i.e the transition between
modes which is assumed Markovian. Nevertheless, to apply
IMM on real applications a number of critical parameters
have to be defined, for instance the set of motion models
and the transition probability matrix(TPM). In practice, the
TPM is often assumed known and is chosen a priori. Besides,
we developed an efficient method in which TPM is on-line
adapted according to the most probable trajectories formed by
objects [6]. In this paper, we present an extension of on-line
adaptation of TPM to classify behaviors of moving objects.
Actually, TPM model changes in displacement of moving
objects. So, these set of changes of displacement could be
seen as a set of behaviors. For instance, when moving in
an environment, some objects will have similar behviors (e.g
pedestrians crossing a parking or cars moving in a specific
direction. These similar behaviors will cause the same changes
of displacements. To obtain a classification of behaviors of
des objects, we use automatically on-line adapted TPM to
characterize typical displacements of objects. Afterwards, this
classification is used to specify a precise TPM for a given
object and so to obtain more adapted modelization of typical
displacements of this object.

The rest of the paper is organized as follows. In the next
section, we present the Daimler Mercedes demonstrator. We
summarize our previous work on on-line adaptation of TPM
in section IIl. Description of our method to automatically
classify tracked objects based on their behaviors is detailled

The Daimler Mercedes demonstrator car.

Fig. 2.

in section IV. Experimental results are given in Section V
and finally in Section VI conclusions and future works are
discussed.

II. THE DAIMLER MERCEDES DEMONSTRATOR

The DaimlerChrysler demonstrator car is equipped with a
camera, two short range radar sensors and a laser scanner
(Fig. 2). The radar sensor is with a maximum range of 30m
and a field of view of 80°. The maximum range of laser
sensor is 80m with a field of view of 160° and a horizontal
resolution of 1°. In addition, vehicle odometry information
such as velocity and yaw rate are provided by the vehicle
sensors. The measurement cycle of the sensor system is 40ms.
Images from camera are for visualization purpose.

ITII. PREVIOUS WORK

In our specific application, different objects such as cars
or motorcycles can move in any directions and can often
change their motions. Thus in our aim we choose various
IMM’s motion models to cover the set of possible directions
and velocities. As each filter corresponds to a specific motion
model, we have to define each motion model. So, assuming
we have different possible velocities defined according to the
vehicle velocity and eight directions in the set of possible
directions an object can follow, we obtain sixteen motion
models (Fig. 3). Hence, according to the definition of these
sixteen motion models, our IMM is composed of sixteen
kalman filters.

Besides, we developed an efficient method in which critical
parameter of the IMM is on-line adapted according to the
most probable trajectories formed by objects. The principle
is the following. For a given number N of trajectories we
build sequences of associated motion models probabilities.
And then, using these motion models probabilities, the TPM is
adapted and reused in the IMM filters for the next estimations.
The TPM is initially chosen to be uniform. In more details,
algorithm 1, given in pseudo-code, is the algorithm defined to
compute one adaptation of the TPM.

An adaptation of the TPM is done after a given number
N of trajectories obtained from tracks, to update TPM using
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Fig. 3. The sixteen chosen motion models in the vehicle’s frame

a window on trajectories (cf. loop line 3-19 of algorithm 1).
Moreover trajectories are processed one by one in three steps:
1- Models’ probabilities are collected by travel through the
computed most probable sequence
2- The most probable models’ sequence is computed
3- The most probable models’ transitions are quantified

A. Collection of models’ probabilities

For each part of a given most probable trajectory computed
in last stages of the filtering process, we collect the distribution
over models(lines 7). Thus a model probabilities’ sequence S,
is obtained in such a way and is stored to be processed (line
8).

B. Computation of the most probable model sequence

In a next step, the most probable models’ sequence of S,
is computed (line 11). More precisely, considering the actual
TPM and a set S;,, = pg...ux of model probabilities through
time 0 to /K, we aim to obtain the most probable models’
sequence knowing the estimates computed by the IMM:

Max P(po pa--pir | o 1. T) (1)

We just need to obtain the maximum of the distribution
P(uy po--pixe | T 21... Tg), thus the inference is made
using the Viterbi Data Algorithm [7]. As complexity of this
algorithm is in O(KM?), we efficiently obtain the most
probable models’ sequence.

Algorithm 1 Adaptive IMM Algorithm

1: Adaptation_of TPM(Ty, ..., TxN)

2:2n+«0

3: repeat

4: Sp — [ ]

5. /* Store pg,...ur from T, the most probable n

trajectory */

6: for all Objectpose xy in T, do
7 {ux} — T(k)
8
9

th

: end for
10:  /* Compute the most probable model sequence MPS */
11:  MPS « Viterbi(Sy)
12:  /* Quantification of model transitions */
13:  for all Couple ( MPSy, MPSky1) in MPS do

14: i« MPS)
15: Jj— MPSiq
16: Fij = Fij + 1

17:  end for

18: n«—n+1

19: until n = N

20: /* Update of TPM in IMM */
21: TPM — Normalization(F)
22: Return TPM in IMM

C. Quantification of most probable model transitions

Using this most probable models’ sequence, the number of
transitions from one model to another is quantified (lines 13 to
17). To do so a frequencies matrix is considered. This matrix
models the number of transitions which have occurred from
one model to another. We note F' this matrix and so Fj; gives
the number of transitions which has occurred from model ¢ to
7. Using the most probable models’ sequence corresponding
to a specific trajectory and computed by the Viterbi algorithm,
the update of F' is directly obtained by counting transitions in
this sequence. Furthermore, F' is kept in memory to be used
in next adaptation and before the first update all its elements
are set to 1.

Finally, when N trajectories have been treated, the new
TPM is obtained by normalization of the frequencies matrix
F'. Thus the TPM is re-estimated using all model sequences
S1...5n and is reused in the IMM for next executions (lines
21 and 22). In practice, before the first run, the TPM is chosen
uniform (according to F' initialization) as we do not want to
introduce a priori data.

Some  experimental results can be
http://emotion.inrialpes.fr/ tdvu/videos.

found at

IV. BEHAVIOR BASED CLASSIFICATION

In this section, we detail how we improved our adaptive
method to track objects by adding a classification module. It
permits to specify a model of TPM for each track. The goal is
in a first stage to compute TPM classes modeling typical object
behaviors. The second stage aim to identify which behavior
and thus at which TPM class it belong. This identification



permits afterward to assign a specif TPM to track, modeling
in a better way the tracked object behavior.

In the first part we present the general principle. The class
computation is exposed in a second part. In the third part
we explain how a class is assigned to each track. The way
the classification module output is used in the multiple object
tracking is shown in the fourth part. Finally a brief conclusion
is given.
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Fig. 4. General schema showing the classification use in the filtering process

1) Principle: The method’s general principle is illustrated
in the figure 4. The filtering part is again represented with
yellow boxes as defined in the previous section. To specify for
each track a TPM using a computed set of TPM classes, we
add three blocs at our adaptive filtering and the algorithm 2
gives the final modified algorithm:

1) a classification component is added in order to take as
an input the same trajectories used in the adaptation
method i.e the most probable trajectories. This compo-
nent is shown in blue on the figure 4. It computes a
set of TPM classes, C1,Cs,...,Ck, which are stored
in memory. This computation figure at lines 17 to 20 in
the algorithm 2;

2) In a class usage component, the most probable TPM
class is identify using the trajectory given as input. For
each trajectory coming from each track, we compute the
most probable TPM class (lines 21 to 28);

3) The last fusion component allows to combine the TPM
obtain by automatic adaptation and the one computed
using the classification. The result will then by used in
each track for the next filtering step via the IMM (lines
29 to 36).

2) Classes computation: In a first part, TPM classes are
computed using the whole set of trajectories given as input
(lines 17 to 20 of the algorithm 2). The aim is to generate

Algorithm 2 Filtering using the classification module
1: /* Filtering takes as input current and deleted tracks */
2: Filtering(Telag,lzl ’ Tsuppr,l:J)
3: /* Compute estimations and predictions using the IMM
filter */
4: for all i from 1 to I do
5:  IMM.computeEstimations(T¢;qg,;)
6:  Return IMM.computePrediction(T¢;4g,;)
7
8
9

: end for
: /* Compute the most probable trajectories */
: for all i from 1 to I do
10:  Traj; < mostProbableTrajectory(Te;qg,:)
11: end for
12: for all j from 1 to J do
13:  Traj; <+ mostProbableTrajectory(Ts,ppr, ;)
14: end for
15: /* Global TPM adaptation */
16: TPM, < TPM_Adaptation(T'raj;.z)
17: /* Class building */
18: if number T'raj > N then
19: Cl,..,Ck «— CEMT'raji.y)
20: end if
21: /* Class utilisation */
22: if number Traj > N then
23:  for all i from 1 to I do

24: if Traji.; > L then

25: TPM; «— MostProbableClass(T'raji.r)
26: end if

27:  end for

28: end if

29: /* TPM Fusion */
30: for all i from 1 to I do
31:  if T PM,; exist then

32: Return - (TPM; + TPM,) in IMM
33:  else

34: Return TPM, in IMM

35:  end if

36: end for

a set of TPM class which models objects behaviors using all
achieved (i.e deleted) trajectories.

For each completed trajectory, be obtain the distribution
over motion models as a sequence. This sequence is then
used to compute a frequency matrix which is normalize to
obtain a TPM. The process is the same as the one used in
the autonomous adaptation but in this case the obtained TPM
is local to each deleted track and not global. In this way, the
computation for N tracks gives N TPM called local TPM but
only one TPM called global is updated during the autonomous
adaptation process.

The purpose is then to compute classes using the set of
N local TPM. The class computation is performed using
Classification Expectation Maximization (CEM) [] in which
classes are represented by multidimensional Gaussians. This
classification algorithm have been chosen for its Gaussian



modelisation and its iterative mode of action permitting to
obtain an output after at any iteration. To apply CEM the local
TPM are simply transformed in vector. Thus the M x M matrix
are transformed in M2 length vectors. By this way, classes are
modeled by Gaussians of mean and covariance matrix with
respectively a size of M2 and M? x M?2.

In practice the classes computation is made every N
achieved tracks as per the autonomous adaptation and it is
performed using the whole history of achieved tracks.

Furthermore, it is necessary to define the number of classes
to use the CEM algorithm. Therefore this number depend on
the user and the application.

3) Classes usage: In this part, a class is assign to each track
(lines 21 to 28 of the algorithm 2). The aim is to compute
the most probable class for a given track and thus identify
the object behavior in order to assign to the track a more
specified TPM, enhancing the next predictions. In this usage
part, the current tracks are considered not as in the Classes
computation. Nevertheless, only tracks with a significant lenght
L are considered in order to obtain coherent classification.

The class identification from the set of classes
Cy,Cs,...,Ck for each track 7; with a TPM local
TPM; is done by first simply transforming the T'PM; in
vector V;, with d its dimension. Then considering the mean
i; and covariance X; of each class C, the associated class
is computed following:

1
V) = argmax 5
@)
By this way, the class TPM is associated at each track
and become its specified TPM resulting in a better prediction.
Also, the associated class can be displayed, giving to the user
information on the object behavior.

~r<
0 L

TPMg TPMg + TPMi

Fig. 5. Utilisation of local TPM for a specific track (I"PM;) and global
TPM (T'PMy) according to the track lenght

4) Fusion of TPM: In this final part, the global TPM
obtained by autonomous adaptation is merged with the specific
TPM computed in the class identification (line 29 to 36 of the
algorithm 2). It permits to specify the used TPM while keeping
the advantages of the adaptive TPM i.e the global behavior of
object and the robustness to behavior variation.

Nevertheless, as a specific TPM is only computed for tracks
with a length above L, it is necessary to use only the global
TPM for other tracks. This principle is illustrated by the figure
5. A track with a length above L will take advantages of both

1 -
exp =3 (Vi) 55 (Vi)

specific and global TPM. As both TPM are important and as
complementaries advantages, an ad hoc fusion is performed
by adding and normalizing the two associated matrix.

5) Conclusion: In this section, a classification module
which come as an integrated part of the filtering as been
presented. Using the local TPM of terminated tracks a set of
class is computed modeling specific objects behaviors. This
set permits in a second time to assign a specific TPM to
each current track. This specific TPM is merged with the
autonomous adapted TPM allowing to model the changed in
behavior while using behavior of previously tracked objects.

V. EXPERIMENTAL RESULTS

In this section, an application of our method is presented.
This application of our multi object tracking with classification
method use real data obtained from the Daimler demonstrator.
The aim is in a first time to automatically classify the two
main objects behaviors in order to reuse the obtain class in the
filtering process. In this normal traffic perception application
the two main expected objects behaviors are traveling in the
demonstrator direction and traveling in the opposite direction.
And in a second time to use these two computed classes.

Fig. 6. First class initialisation

Fig. 7.

Second class initialisation

6) Class computation results: Using our classification
method, local TPM are computed for each terminated track.
After obtaining a significant set of local TPM, two classes are



Fig. 8.  Matrix vue modeling the first class mean obtained using 30 tracks

Fig. 9. Matrix vue modeling the second class mean obtained using 30 tracks

automatically computed. As explained, in our tracking appli-
cation, 16 motions models are defined as shown in figure 3.
So local and global TPMs are of size 16 x 16. And therefor
the classes are modeled by Gaussians with 1)a mean vectors
of size 16 - 16 i.e 256 constructed using the set of local TPM
and 2) covariance matrix of size 256 x 256.

Given the number of tracks provided by the data set and the
classes dimension, a very rough classes initialization is needed
in order to ensure the convergence the CEM algorithm. Figures
6 and 7 show these two very approximative initializations.

The final classification output is demonstrated by figures
8 and 9. This classes are obtain after the completion of 30
tracks. We can clearly observe that first the two classes are
well distinct and then that the modeled behavior correspond to
the two expected main behavior. This classes can in a second
stage be used to specify the TPM of the current tracks.

7) Classes utilisation results: The computed classes are in
a second stage used during the tracking process and allow
to specify a more specific TPM to each current track. this
specification permit a better match between prediction model
and real object behaviors. Also, it permits to assign a specific
known behavior to each object allowing to provide useful
information to the system user.

Figures 10, 11 and 12 show the specialization output.
To illustrate the principle a object traveling in the opposite
direction is considered. This object has been tracked for more
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Fig. 10. Most probable TPM for this specific track
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Fig. 11. Global TPM obtain using our adaptive method

Fig. 12.

TPM obtained after the fusion process

than L steps knowing that in our application a time step is
40 ms and that L has been set to 20. Therefore if an object
is correctly tracked for less than 0.8 seconds, the global TPM
is used alone for the IMM filtering, if not the global TPM
and the classes TPM are used together for the filtering. In
our illustration the object has been tracked for more than one
second and the track is used to computed the most probable
models sequence. This sequence is used to find the most
probable class and thus assign a class TPM to the track, this
TPM is shown in the figure 10. After, this class TPM and
the global TPM automatically adapted using the whole set of
deleted tracks (figure 11) are merged to obtain the specific
TPM. this final TPM is used for all the next filtering stages.



The whole specialization process allow to take into account
the whole set of observed tracks and the automatically com-
puted set of classes. By this method adaptive and specific
modellisation of behavior is considered improving the match
between the real object motion and its prediction.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper a method to perform object behavior classifi-
cation is presented. This method comes in addition to a global
approach to accomplish simultaneously online local mapping
and moving object tracking. The classification process rely on
the utilization of the TPM adaptation process included in the
IMM filter (which is part of the MHT). This process permits in
a first step to automatically compute classes modeling objects
behavior and more specifically transition between motions via
the TPM. In a second step, the classes are then use to specify
online the TPM for each track, leading in a better object
position prediction.

Results presented on real data using the Daimler demon-
strator show that the method is able to automatically compute
two classes corresponding to the two main object behaviors.
Furthermore, a direct application of the class utilization as been
presented showing the fusion between the autonomous global
TPM adaptation and the classification result.

In perspectives, the way to obtain automatically the number
of classes will be studied. Also, the information on the object
belonging to a specific class can be further exploited, for
instance for display purposed in the demonstrator by providing
external informations to the driver on future object motion.
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