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Abstract—In this paper we have developed a technique for
low level data fusion between laser and monocular color camera
using occupancy grid framework in the context of internal
representation of external environment for object detection. Based
on a small variant of background subtraction technique we
construct an occupancy grid for camera and fuse it with the
one constructed for laser to get a combined view. The results
obtained using Cycab simulator prepared by INRIA show the
effectiveness of our technique.

Index Terms—Laser-Vision Data Fusion, Occupancy Grids,
Robot Environment Representation.

I. INTRODUCTION

Perceiving or understanding the environment is a very
important step in the design of autonomous vehicles. To solve
this problem, autonomous vehicles are equipped with different
sensors in order to perceive their environment and monitor
the execution of the planned motion. To be useable, raw data
provided need to be processed. An important step in this
processing is the fusion of data coming from different sensors.
Fusion is the process of combining information from multiple
sources in such a way that the combined information are more
useful in some sense.

In many applications, to perform fusion, a geometric point
of view is used: a set of geometric features is first defined, a
model of uncertainty associated to each feature is also needed
and a way to fuse features has also to be provided. For
instance, [1] used infrared camera and radar to detect and track
road obstacles. Each sensor returns a point as observations
of the position of each obstacle present in the environment.
The uncertainty associated to this position is modelled by
a gaussian and when two observations correspond to the
same obstacle a fusion of the two corresponding gaussians
is performed to estimate the position of the object. In [2],
a generalized feature model for the multi sensor case has
been developed. This generalized feature model is based on
the assumption that any entity in the world can be detected
and recognized by means of features. Features are assumed to
be dedicated parts of the entity with certain spatio-temporal
coordinates in the coordinate system of the entity. Actually,
the major drawback of the geometric approach is the number
of different geometric features (points, segments, polygons,
ellipses, etc) that the perception system must handle. Moreover,
this approach is unable to take into account a new objet that

appears in the environment and that could not be defined using
the predefined set of features.

An other way to model the environment has been introduced
by Elfes and Moravec at the end of the 1980s. This framework
to multi-sensor fusion is called Occupancy Grids (OG). An
occupancy grid is a stochastic tessellated representation of
spatial information that maintains probabilistic estimates of
the occupancy state of each cell in a lattice [3]. The main
advantage of this approach is the ability to integrate several
sensors in the same framework taking the inherent uncertainty
of each sensor reading into account, in opposite to the Ge-
ometric Paradigm whose method is to categorize the world
features into a set of geometric primitives. The alternative
that OGs offer is a regular sampling of the space occupancy,
that is a very generic system of space representation when no
knowledge about the shapes of the environment is available.
The occupancy grid paradigm has been applied successfully
in many different ways. For example, some systems use occu-
pancy grids to plan collision-free paths [4] or for path planning
and navigation [5] [6]. Therefore, most of actual mapping
systems resort to OG for modelling the environment [5], [7].
And above all with appropriate sensor models OG provides
a rigorous way to manage occlusions in the sensor field of
view. Contrary to the feature based environment model, the
only requirement for an OG building is a bayesian sensor
model. This sensor model is the description of the probabilistic
relation that links sensor measurement to space state, that OG
necessitates to make the sensor integration.

In this paper, we present a new method to perform fusion
between two kinds of sensors: a laser scanner and a monocular
color camera. In next section, we present the experimental
platform used to evaluate the solution we propose. Section III
defines the occupancy grid’s basic concepts. In section IV and
V, we detail how the sensor model of laser scanner and of
camera are built. Fusion process is detailed in section VI.
Experimental results are reported in section VII. We give some
conclusions and perspectives in section VIII.

II. EXPERIMENTAL SETUP

The demonstrator vehicle used to get data sets for this work
is a simulator of a Cycab1 vehicle prepared by INRIA. This
simulator provides a graphical interface along with a movable

1http://cycabtk.gforge.inria.fr/wiki/doku.php?id=download
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Fig. 1. Cycab with laser scanner and camera mounted on it.

Cycab car. This Cycab car has simulated laser and camera
sensors fixed on it. We can also load different static and moving
objects in the view by executing their respective scripts. With
this simulator creation of experimental environment becomes
very easy.

The figure 1 provides a close view of the Cycab vehicle and
the two sensors mounted on it. In the simulator environment
this Cycab vehicle can move around in the parking.

The simulated laser scanner has a field of view of 180◦ and
a maximum range of 90 meters. It has 360 laser beams called
channels.

III. OCCUPANCY GRID

In this section we will describe the process of constructing
occupancy grid for generic sensor’s data, but first a word on
notations. We denote the discrete time index by the variable t,
the sensor observation from vehicle at time t by the variable
zt where z is a vector of n >= 1 dimensions that depends on
the sensor used.

Occupancy grid is a multi-dimensional tessellation of space
into cells where each cell stores a probabilistic estimate of its
state. In this representation, the vehicle environment is divided
into a two-dimensional lattice M of rectangular cells and to
each cell Mi is associated an occupancy probability having
a value between [0, 1] indicating whether a cell is occupied
or free. A high value of cell probability indicates the cell is
occupied and a low value means the cell is free. Here we make
the assumption that occupancy states of individual grid cells
are independent. At an instant of time t the state of a cell Mi

can be estimated by the posterior probability of occupancy
P (M | z1:t) but because of cell independence assumption it is
equivalent to estimate P (Mi | z1:t) for each cell Mi of grid
M , given observations z1:t = {z1, ..., zt}.

In the literature, many methods are used for occupancy grid
mapping, such as Bayesian [8], Dempster-Shafer [9] and Fuzzy
Logic [10]. Here we apply Bayesian Update scheme [11] that
provides an elegant recursive formula to update the posterior

for new observations under log-odds form:

log Odds(Mi | z1:t) = log Odds(Mi | z1:t−1)
+ log Odds(Mi | zt)− log Odds(Mi) (1)

where Odds(a | b) = P (a | b) / (1− P (a | b))

In equation (1) P (Mi) is the prior occupancy probability of
the map which is set to 0.5 representing an unknown state.
The remaining probability P (Mi | zt), is called the inverse
sensor model. It specifies the probability that a grid cell
Mi is occupied based on a single sensor measurement zt.
Moreover, since the updating algorithm is recursive, it allows
for incremental cell state updating when new sensor data
arrives. To construct an occupancy grid for a sensor we must
define an appropriate inverse sensor model for that sensor.

It is easy to see that the desired probability of occupancy,
P (Mi | z1:t), can be recovered from the log-odds representa-
tion using the equation (2).

P (Mi | z1:t) = 1− 1
1 + exp log Odds(Mi | z1:t)

(2)

IV. OCCUPANCY GRID FOR LASER

For laser sensor the measurement is defined as zt =
{z1

t , ..., z
K
t } for K individual measurements corresponding to

K laser beams. A laser beam reading looks like z = [r, θ]T

where r is the distance and θ is the beam angle. In order to
construct occupancy grid for laser we need to define the inverse
sensor model corresponding to P (Mi | zt) term in equation 1.
Figure 2 shows a well known inverse sensor model for laser
sensor. This corresponds to detecting an object at distance d,
so a high value of probability near d, the width of this almost
bell shaped curve near d pertains to the uncertainty of the laser
sensor. The flat curve of low probability before the high value
means space is empty between the sensor and the object. A
constant value of 0.5 probability after the distance d means that
the occupancy state of the cells is unknown past the object at
distance d because this object is hiding anything behind it.

In our implementation of this inverse sensor model, the
occupancy state of a cell is decided by the nearest beam from
the center of this cell. If the nearest beam goes beyond this cell
it has low probability of occupancy. But if the nearest beam
terminates in the cell or quite near this cell, it has high value
of occupancy. Otherwise cell has a value of 0.5 indicating that
the occupancy state is unknown.

V. VISION PROCESSING

As we know that an image from a camera is a 2D projection
of a 3D view. Whereas a laser scanner scans semi-circle shaped
horizontal plane at a fixed height from ground. Since our target
is to construct two grids, one for laser and one for camera,
and then to merge them to get a combined occupancy state
of the view. Therefore it is very important that constructed
grids correspond to the same area of the 3D view for both
sensors. Horizontal plan scanned by laser corresponds to a
sort of horizontal strip in the image. This implies that if we
want to calculate occupancy grid for camera then we, first of
all, need to find the points in the image corresponding to each



Fig. 2. Probability curve of inverse sensor model for a laser sensor detecting
an object at distance d.

laser beam. This requires us to perform transformations from
laser reference frame towards camera reference frame. These
transformations will give us pixels in the image that correspond
to the hit points of the laser beams. So for each laser hit point
P = [x, y, z, 1]T we need the pixel X = [u, v, 1]T . For laser
we have x = r cos(Θ),y = r sin(Θ) and z = 0 since our
global origin is same as that of laser reference frame’s origin.
We use following equations from vision literature to calculate
these transformations.

X3×1 ∼ PM3×4 × P4×1 (3)

Where Projection Matrix PM is given as:

PM3×4 = K3×4 ×
(

R −Rt
0T 1

)
4×4

(4)

Here K is the camera calibration matrix. R is rotation matrix
and t is the camera translation vector. Camera is calibrated and
fixed with respect to laser scanner so we know values of these
matrices and vector.

By applying these equations we can calculate image pixels
for each laser beam if its termination point lies in the camera
view. Now in order to classify these pixels as belonging to
objects or background, we need a technique to differentiate
background from the foreground. This technique is explained
below.

A. Object Detection

Our object detection technique is based on background sub-
traction. We classify a pixel as either belonging to background
or foreground. In order to apply this technique we need to
learn background first. We have used multivariate Gaussian
distribution technique to learn background. In our case bound-
ing fence of the parking area forms the background. Learning
background essentially means learning mean vector (µ) and
covariance matrix(Σ) of the multivariate Gaussian distribution.
For this purpose we collect different sets of pixels belonging
to background from different distances by moving cycab in the
parking area and manually segmenting the regions belonging

Fig. 3. Simulated parking area.

to background. Figure 3 shows the simulated parking area
with bounding fence and parked cars in it. Some example
background segments belonging to the bounding fence are
shown in the figure 4. Now we can calculate the µ and Σ
parameters of the multivariate Gaussian distribution for N
background pixels X = [r, g, b]T as follows:

µ =
1
n

N∑
i=1

Xi (5)

Σ =
1
n

N∑
i=1

(Xi − µ).(Xi − µ)> (6)

The advantage of this technique is that object detection will
work even if the simulator cycab is moving in the parking area.

After we have learnt background parameters we can apply
following equation to classify any pixel x = [r, g, b]T as
belonging to object or background.

fx(r, g, b) =
1

(2π)3/2|Σ|1/2
exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
(7)

If the probability is smaller than a threshold value, learnt
experimentally, then the pixel belongs to an object otherwise
it belongs to background.

B. Occupancy Grid For Camera

For camera measurement is defined as zt = {z1
t , ..., z

k
t }

for k individual pixels corresponding to k laser beams’ termi-
nation points visible in the camera view. Whereas one pixel
measurement is defined as z = [c] where c is the class of the
pixel. For constructing an occupancy grid we need to define
inverse sensor model for camera to calculate P (Mi | zt) term
in equation 1. We define inverse sensor model as follows, if a
pixel is classified as belonging to background then all the cells
lying along a line from camera to the end of the grid have low
value of occupancy. But if the pixel is classified as objet then
all the cells lying along the line have relatively high value of



Fig. 4. Training data used for the calculation of µ and Σ.

the occupancy state. Since we do not have depth information
from the images so all the cells along the line have high value
of occupancy if the pixel is classified as belonging to object.
The cells lying outside of the camera view have a probability
value of 0.5 which means unknown state.

The steps to construct an occupancy grid for camera are as
follows:

• Find pixels of the image corresponding to laser hit points
for those laser beams which lie in the camera view.
We need this step only to know the image region that
is common with laser so that both occupancy grids are
compatible.

• Find class of these pixels to see which of them belong to
background and which of them belong to objects.

• Using definition of inverse sensor model given above,
set probabilities of all cells using pixel classfication
information.

Figure 5 shows an occupancy grid constructed from camera
with laser hit points projected on this grid. We can see that
most of the points lie in the area where there is high probability
of occupancy, showing the effectiveness of this technique.

Fig. 5. Occupancy grid for camera within red lines with black dots
representing objects detected by laser

Fig. 6. Fusion at different levels

VI. FUSION

Fusion is the process of combining information from mul-
tiple sources in such a way that the combined information
are more useful in some sense. Our objective is to combine
information from laser and camera sensors. Fusion can be
performed at different levels like, low level, object detection
level and track level fusion as is shown in the figure 6. Our
work is concerned with fusion at low level. An advantage of
fusion at this level is that there is no information loss due to
any interpretation of data which is necessary for higher levels.

There exist different fusion techniques of which we have
used weighted linear combination of the two grids. Fusion
equation is given below:

FusedGridt,i = α.CameraGridt,i + (1− α).LaserGridt,i

(8)
Here α is the weighting factor for camera and its value is
between 0 and 1.

Another fusion technique that we have used is the conser-
vative estimate. Let ml

i is the ith cell of the occupancy map
built for laser sensor and mc

i is the same cell for camera sensor.
Then the value of same cell in the fused grid is given by:

mi = max(ml
i,m

c
i ) (9)

This map is the most pessimistic map given its components:
If any of the sensor-specific map shows that a grid cell is
occupied, so will the combined map. While this combined
estimator is biased in factor of occupied maps, it is more
appropriate than the Bayes filter approach when sensors with
different characteristics are fused [11].

VII. RESULTS

Fusion results of weighted linear combination for three
different values of α are shown in figures 7, 8 and 9. The red
lines in the fused view show the camera view with respect to
laser view. The respective scenes for these results are shown



Fig. 7. Laser OG at left, Camera OG at right and Fused OG at bottom for
α = 0.1

Fig. 8. Laser OG at left, Camera OG at right and Fused OG at bottom for
α = 0.4

in figures 10 and 11. Similarly the figure 12 shows fusion
results for conservative approach for the same scene as shown
in figure 11.

We can see from these results that the two occupancy grids
constructed for laser and camera are very good approximation
of the actual environment. And the fused view shows the
combined information of both the sensors. Moreover the green
rectangles in the scene figures show the detected objects.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have presented a technique to construct two
occupancy grids one for laser and the other for camera. For
camera we have introduced the idea of finding same region in
the image that belongs to the scan plan of the laser sensor so

Fig. 9. Laser OG at left, Camera OG at right and Fused OG at bottom for
α = 0.7

Fig. 10. Scene for α = 0.1

Fig. 11. Scene for α = 0.4 and α = 0.7

Fig. 12. Fusion result for conservative approach.



that the two constructed grids are compatible and can be further
used for fusion. We have performed two kinds of low level
fusion on these grids to get the combined view. The results
show that this technique can be useful in the environments
where background can be distinguished from the foreground.

For this work we had assumed that robot is not moving
but objects in its view can be both dynamic and static.
In future work we would apply these techniques with the
robot moving and then to solve problems like Localization,
SLAM, SLAMMOT AND DATMO. For camera we would also
explore other techniques for object detection than background
subtraction, this will enable us to apply these methods for
robots functioning in unstructured environments. We believe
that combining laser information we can be better able to detect
regions of interest in camera images and this can be further
used to get rich information of classification.
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