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Abstract— In this paper, we present a real-time algorithm
for online simultaneous localization and mapping (SLAM)
with detection and tracking of moving objects (DATMO) in
dynamic outdoor environments from a moving vehicle equipped
with laser sensor and odometry. To correct vehicle location
from odometry we introduce a new fast implementation of
incremental scan matching method that can work reliably in
dynamic outdoor environments. After a good vehicle location
is estimated, the surrounding map is updated incrementally
and moving objects are detected without a priori knowledge of
the targets. Detected moving objects are finally tracked using
Global Nearest Neighborhood (GNN) method. The experimental
results on dataset collected from INTERSAFE-2 demonstrator
for typical scenario show the effectiveness of this technique.

I. INTRODUCTION

Perceiving or understanding the environment surrounding
a vehicle is a very important step in driving assistance
systems or autonomous vehicles. The task involves both si-
multaneous localization and mapping (SLAM) and detection
and tracking of moving objects (DATMO). While SLAM
provides the vehicle with a map of the environment, DATMO
allows the vehicle being aware of dynamic entities around,
tracking them and predicting their future behaviours. If we
are able to accomplish both SLAM and DATMO reliably in
real time, we can detect critical situations to warn the driver
in advance and this will certainly improve driving safety and
can prevent traffic accidents.

Recently, there have been considerable research efforts
focusing on SLAM and DATMO [24][14][33][34]. However,
for highly dynamic outdoor environments like crowded ur-
ban streets, there still remain many open questions. These
include, how to represent the vehicle environment and how
to differentiate moving objects and stationary objects as well
as how to track moving objects over time.

In this context, we design and develop a generic archi-
tecture to solve SLAM and DATMO in dynamic outdoor
environments. The architecture (Fig. 1) is divided into two
main parts: the first part where the vehicle environment is
mapped and moving objects are detected; and the second
part where previously detected moving objects are verified
and tracked.

In the first part of the architecture, to model the envi-
ronment surrounding the vehicle, we use the Occupancy
Grid framework developed by Elfes [10]. Compared with
feature-based approaches [16], grid maps can represent any
environment and are specially suitable for noisy sensors in
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Fig. 1. Architecture of the perception system

outdoor environments where features are hard to define and
extract. Grid-based approaches also provide an interesting
mechanism to integrate different kinds of sensors in the same
framework taking the inherent uncertainty of each sensor
reading into account. On the contrary of a feature based
environment model, the only requirement for an OG building
is a bayesian sensor model for each cell of the grid and
each sensor. This sensor model is the description of the
probabilistic relation that links sensor measurement to space
state, that OG necessitates to make the sensor integration.
Fortunately it is possible for a wide class of sensors to
factorise this amount of data by taking advantage of the
characteristics of the sensor. Regarding telemetric sensors,
sensor model for sonar [35] and laser range finders [26]
have been defined and used to map the environment. 3D
occupancy grids have been built using stereo vision[19] and
a set of camera [12].

In the second part, detected moving objects in the ve-
hicle environment are tracked. Since some objects may be
occluded or some are false alarms, multi object tracking
helps to identify occluded objects, recognize false alarms
and reduce miss-detections. In general, the multi objects
tracking problem is complex: it includes the definition of
filtering methods, but also association methods and main-
tenance of the list of objects currently present in the en-
vironment [3][28]. Regarding tracking techniques, Kalman
filters [15] or particle filters [1] are generally used. These



filters require the definition of a specific dynamic model of
tracked objects. However, defining a suitable motion model
is a real difficulty. To deal with this problem, Interacting
Multiple Models [18][25] have been successfully applied
in several applications. In previous works [7][6], we have
developed a fast method to adapt on-line IMM according to
trajectories of detected objects and so we obtain a suitable
and robust tracker. To deal with the association and mainte-
nance problem, we extend our approach to multiple objects
tracking using the Multiple Hypothesis Tracker [4][5].

This architecture has been used in the framework of the
European project PReVENT-ProFusion1. The goal of this
project is to design and develop generic architectures to
perform perception tasks (i.e., mapping of the environment,
localization of the vehicle in the map, and detection and
tracking of moving objects). In this context, our architecture
has been integrated and tested on two demonstrators: a
Daimler-Mercedes demonstrator and a Volvo Truck demon-
strator. The main difference between these 2 demonstrators
is the level of abstraction of data provided by the different
sensors on each demonstrator: raw data for the Daimler-
Mercedes demonstrator (i.e., low level of abstraction) and
preprocessed data for the Volvo Truck demonstrator (i.e.,
high level of abstraction). To achieve this task, we have
to design and implement specific parts of the first level of
the architecture: specific sensor models and also specific
techniques to detect moving objects using the occupancy
grid. The second level of the architecture remains the same
for each demonstrator.

In [29], a description of the specific part of the first level
for the Daimler demonstrator is reported: building specific
sensor models and designing specific techniques for detecting
moving objects. In [13], we described the specificities of
our architecture for the Volvo Truck demonstrator: design-
ing and implementing sensor models for preprocessed data
and specific techniques for detection of moving objects.
In [8] [31], the second level is detailed. Moreover, results
and comparison with other perception system for Pre-Crash
applications is described in [23].

Our generic architecture is now used on a Volkswagen
demonstrator in the european project INTERSAFE-22 related
to safety at intersection. On this demonstrator, we will
have to fusion data coming from laser, stereo vision and
short range radar. The goal of this paper is to present our
preliminary results on this demonstrator and also to discuss
the future works on this platform.

The rest of the paper is organized as follows. In the next
section, we present the Volkswagen demonstrator. A brief
overview of Environment Mapping with Occupancy Grid
is given in section III. Detection of moving objects using
occupancy grid previously built is detailed in section IV.
Experimental results are given in Section V. A detailed
discussion about the future work on this demonstrator is
reported in section VI. Finally, in Section VII conclusions
are presented.

1www.prevent-ip.org/profusion

II. INTERSAFE-2 AND VOLKSWAGEN
DEMONSTRATOR DESCRIPTION

The European Union funded INTERSAFE-2 project aims
to develop and demonstrate a Cooperative Intersection Safety
System (CISS) that is able to significantly reduce injury and
fatal accidents at intersections. Many teams and automobile
makers from around the europe are participating in this
project. The novel CISS combines warning and intervention
functions demonstrated on three vehicles: two passenger cars
and one heavy goods vehicle. These vehicles are equipped
with different sensors to observe the environment. On the
intersections there are some areas which are not visible for
the vehicle so called black sopts. In order to prevent acci-
densts in these areas infrastructure at the intersections is also
equipped with sensors and communication equipment to send
the observed information to the vehicle. Another important
part is the v2v communication where vehicles communicate
with each other to share information at intersections.

Our work pertains to the perception module of this project
and specifically relates to the fusion of data from different
on-board and infrastructure sensors for Volkswagen demon-
strator. We will perform this fusion task at different levels
of abstraction for different sensors.

Inorder to perform its tasks for this project Volkswagen
demonstrator requires specific environmental sensors such as
on-board sensors as well as a communication link between
vehicle and infrastructure. Figure 2 illustrates the chosen
sensor set and coverage area. The sensor set-up includes
sensors which are already in serial cars available, namely
front ACC radar and rear-looking radar for lane change
support. These sensors are accompanied by a stereo camera
system to the front with high field of view of about 60.
Stereo vision is a very high potential sensor which has the
capability of detecting and measuring objects as well as lane
delimiters like curbs, stop lines, pedestrians and other impor-
tant environment. The main advantage of using stereo instead
of monocular vision is the precise distance determination
capability. A scanning laser with a field of view of about
160 and dedicated radar sensors directed to +90 and -90
respectively are foreseen for measuring the objects coming
from the side. These sensors are able to measure position,
velocity and some geometrical parameters of the relevant
objects at intersections. The communication link (ad-hoc-
network, connection-free, IEEE802.11p standard) offers the
possibility to transmit information about objects and their
trajectories which are not probably in the line of sight or
beyond the maximum range of the on-board sensors. This
information enriches the on-board sensor measurements.

III. LOCALIZATION AND MAPPING
For a true autonomous robot it is imperative to solve

the localization and mapping problem collectively known as
SLAM. But for a working safety navigation application a
good global map is not necessary but we need a good local
map. So in this work we will not consider the revisiting or
loop closing part of the SLAM problem. Here we will use the
incremental mapping approach based on a fast scan matching



Fig. 2. Sensors installed on the demonstrator vehicle

algorithm presented in [32], and we will verify this technique
on our new data set obtained from new demonstrator. This
technique involves in building a consistent local vehicle map
which is updated incrementally when new data arrive along
with good estimates of vehicle locations obtained from the
scan matching algorithm. The advantages of this incremental
approach are that the computations are very fast and the
whole process runs on-line.

A. Notations Used

We denote the discrete time index by the variable t, the
laser observation from vehicle at time t by the variable
zt = {z1

t , ..., z
K
t } including K individual measurements

corresponding to K laser beams, the vector describing an
odometery measurement from time t − 1 to time t by the
variable ut and it consists of velocity, steering angle and
yaw rate, the state vector describing the true location or pose
of the vehicle at time t by the variable xt consisting of xy
coordinates and orientation angle. Please note that we use ut

to calculate the corresponding value of xt.

B. Occupancy Grid Map

Occupancy Grid is a multi-dimensional tessellation of
space into cells where each cell stores a probabilistic estimate
of its state. In this representation, the vehicle environment
is divided into a two-dimensional lattice M of rectangular
cells and each cell Mi is associated with an occupancy
probability taking a real value in [0, 1] indicating whether
a cell is occupied by an obstacle or not. A high value of cell
probability indicates the cell is occupied and a low value
means the cell is free. Here we make the assumption that
occupancy states of individual grid cells are independent. The
objective of a mapping algorithm is to estimate the posterior
probability of occupancy P (M |x1:t, z1:t) but because of
cell independence assumption it is equivalent to estimate

P (Mi |x1:t, z1:t) for each cell of grid Mi, given observations
z1:t = {z1, ..., zt} at corresponding known poses x1:t =
{x1, ..., xt}.

In the literature, many methods are used for occupancy
grid mapping, such as Bayesian [10], Dempster-Shafer [22]
and Fuzzy Logic [21]. Here we apply Bayesian Update
scheme [28] that provides an elegant recursive formula to
update the posterior under log-odds form:

log Odds(Mi |x1:t, z1:t) = log Odds(Mi |x1:t−1, z1:t−1) +
+ log Odds(Mi | zt, xt)− log Odds(Mi) (1)

where Odds(a | b) = P (a | b) / (1− P (a | b))

In (1), P (Mi) is the prior occupancy probability of the
map which is set to 0.5 representing an unknown state. The
remaining probability P (Mi |xt, zt), is called the inverse
sensor model. It specifies the probability that a grid cell
Mi is occupied based on a single sensor measurement zt

at location xt. In our implementation, it is decided by the
measurement of the nearest beam to the mass centre of this
cell.

It is easy to see that the desired probability of occupancy,
P (Mi |x1:t, z1:t), can be recovered from the log-odds repre-
sentation using the following equation.

P (Mi |x1:t, z1:t) = 1− 1
1 + expOdds(Mi |x1:t, z1:t)

Moreover, since the updating algorithm is recursive, it allows
for incremental map updating when new sensor data arrives.

C. Scan Matching against Occupancy Grid Map

In order to build a consistent map of the environment, a
good vehicle localization is required. Because of the inherent
error, using only odometery often results in an unsatisfied
map (see Fig. 3 left). When features can not be defined
and extracted, direct scan matching techniques like ICP
[17] can help to correct the odometery error. The problem
is that sparse data in outdoor environments and dynamic
entities make correspondence finding difficult. One important
disadvantage of the direct scan matching methods is that they
do not consider the dynamics of the vehicle.

An alternative approach that can overcome these limi-
tations consists in setting up the matching problem as a
maximum likelihood problem [27], [14]. In this approach,
given an underlying vehicle dynamics constraint, the current
scan’s position is corrected by comparing with the local grid
map constructed from all observations in the past instead of
only with one previous scan. Mathematically, we calculate a
sequence of poses x̂1, x̂2, ... and sequentially updated maps
M1,M2, ... by maximizing the marginal likelihood of the
t-th pose and map relative to the (t− 1)-th pose and map:

x̂t = argmax
xt

{P (zt |xt,M
t−1) . P (xt | x̂t−1, ut)} (2)

In the equation (2), the term P (zt |xt,M
t−1) is the

measurement model which is the probability of the most
recent measurement zt given the pose xt and the map M t−1

constructed so far from observations z1:t−1 at corresponding



Fig. 4. An example of scan matching. From left to right: reference image; map created so far Mt−1 and previous vehicle pose xt−1; laser measurement
at time t; and matching result is obtained from the consistency of the measurement with the map and the previous vehicle pose.

Fig. 3. Hit maps build directly from raw laser data collected from a vehicle
moving along a straight street: with vehicle localization using odometery
(left); and using results of scan matching (right). Note that the scan matching
results are not affected by moving objects in the street.

poses x̂1:t−1 that were already estimated in the past. The
term P (xt | x̂t−1, ut) represents motion model which is the
probability that the vehicle is at location xt given that the
vehicle was previously at position x̂t−1 and executed an
action ut. The resulting pose x̂t is then used to generate
a new map M t according to (1):

M t = M t−1 ∪ {x̂t, zt} (3)

Now the question is how to solve the equation (2), but

let us first describe the motion model and the measurement
model used.

For the motion model, we adopt the probabilistic velocity
motion model similar to that of [28]. The vehicle motion ut

is comprised of three components, the translational velocity
vt, steering angle θt and the yaw rate ωt. Fig. 5 depicts the
probability of being at location xt given previous location
xt−1 and control ut. This distribution is obtained from the
kinematic equations, assuming that vehicle motion is noisy
along its rotational and translational components.

For the measurement model P (zt |xt,M
t−1), mixture

beam-based model is widely used in the literature [11], [14].
However, the model come at the expense of high computation
since it requires ray casting operation for each beam. This
can be a limitation for real time application if we want to
estimate a large amount of measurements at the same time.
To avoid ray casting, we propose an alternative model that
only considers end-points of the beams. Because it is likely
that a beam hits an obstacle at its end-point, we focus only
on occupied cells in the grid map. A voting scheme is used
to compute the probability of a scan measurement zt given
the vehicle pose xt and the map M t−1 constructed so far.
First, from the vehicle location xt, individual measurement
zk
t is projected into the coordinate space of the map. Call
hitkt the grid cell that its projected end-point falls into. If
this cell is occupied, a sum proportional to the occupancy
value of the cell will be voted. Then the final voted score
represents the likelihood of the measurement. Let P (M t

i )
denote the posterior probability of occupancy of the grid



cell Mi estimated at time t (follows (1)), we can write the
measurement model under the sum following:

P (zt |xt,M
t−1) ∝

K∑
k=1

{P (M t−1
hitk

t
) |M t−1

hitk
t

is occupied }

(4)
The proposed method is just an approximation to the

measurement model because it does not take into account
visibility constraints, but experimental evidences show that
it works well in practice. Furthermore, with a complexity of
O(K), the computation can be done rapidly.

It remains to describe how we maximize (2) to find the
correct pose x̂t. Hill climbing strategy in [27], [14] can
be used but may suffer from a local maximum. Exploiting
the fact that the measurement model can be computed very
quickly, we perform an extensive search over vehicle pose
space. A sampling version of the motion model (Fig. 5 right)
is used to generate all possible poses xt given the previous
pose xt−1 and the control ut. The resulting pose will be
the pose at which the measurement probability achieves a
maximum value. Because of the inherent discretization of
the grid, the sampling approach turns out to work very
well. In practice, with a grid map resolution of 20 cm, it
is enough to generate about four or five hundreds of pose
samples to obtain a good estimate of the vehicle pose with
the measurement likelihood that is nearly unimproved even
with more samples. The total computational time needed for
such a single scan matching is about 10 ms on a low-end
PC.

An example of scan matching result is shown in Fig. 4.
The color of each grid map cell indicates its probability of
being occupied: gray=unknown, white=free, black=occupied.
The most likely vehicle pose is obtained when the laser scan
is aligned with the occupied parts of the map and at the same
time the vehicle dynamics constraint is satisfied.

Besides the computational effectiveness, one attraction of
our algorithm is that it is not affected by dynamic entities in
the environment (see Fig. 3 right). Since we only consider
occupied cells, spurious regions in the occupancy grid map
that might belong to dynamic objects do not contribute to
the sum (4). The voting scheme ensures that measurement
likelihood reach a maximum only when the measurement
is aligned with the static parts of the environment. To

Fig. 5. The probabilistic velocity motion model P (xt | xt−1, ut) of the
vehicle (left) and its sampling version (right).

some meaning, measurements from dynamic entities can
be considered as outliers. This property is very useful for
moving object detection process that will be described in
the next section.

D. Local mapping

Because we do not need to build a global map nor
deal with loop closing problem, only one on-line map is
maintained at each point in time representing the local
environment surrounding of the vehicle. The size of the local
map is chosen so that it should not contain loops and the
resolution is maintained at a reasonable level. Every time
the vehicle arrives near the map boundary, a new grid map is
initialized. The pose of the new map is computed according
to the vehicle global pose and cells inside the intersection
area are copied from the old map.

IV. OBJECT DETECTION AND TRACKING

After a consistent local map of the vehicle is constructed
from SLAM, moving objects can be detected when new
measurements arrive. The principal idea is based on the
inconsistencies between observed free space and occupied
space in the local grid map. If an object is detected on a
location previously seen as free space, then it is a moving
object. If an object is observed on a location previously
occupied then it probably is static. If an object appears in a
previously not observed location, then we can say nothing
about that object.

Another important clue which can help to decide if an
object is dynamic or not is evidence about moving objects
detected in the past. For example, if there are many moving
objects passing through an area then any object that appears
in that area should be recognized as a potential moving
object. For this reason, apart from the local static map M
as constructed by SLAM described in the previous section,
a local dynamic grid map D is created to store information
about previously detected moving objects. The pose, size and
resolution of the dynamic map is the same as those of the
static map. Each dynamic grid cell store a value indicating
the number of observations that a moving object has been
observed at that cell.

From these remarks, our moving object detection process
is carried out in two steps as follows. The first step is to
detect measurements that might belong to dynamic objects.
Here for simplicity, we will temporarily omit the time index.
Given a new laser scan z, the corrected vehicle location
and the local static map M computed by SLAM and the
dynamic map D containing information about previously
detected moving objects, state of a single measurement zk

is classified into one of three types following:

state(zk) =

 static : Mhitk = occupied
dynamic : Mhitk = free orDhitk > α
undecided : Mhitk = unknown

where hitk is the coordinate of the grid cell corresponding to
the end-point of the beam zk and α is a predefined threshold.



Fig. 6. Moving object detection example.

The second step is after dynamic measurements are de-
termined, moving objects are then identified by clustering
end-points of these beams into separate groups, each group
represents a single object. Two points are considered as
belonging to the same object if the distance between them
is less than 0.3 m.

Fig. 6 illustrates the described steps in detecting moving
objects. The leftmost image depicts the situation where the
vehicle is moving along a street seeing a car moving ahead
and a motorbike moving in the opposite direction. The
middle image shows the local static map and the vehicle
location computed by SLAM and the current laser scan is
drawn in red. Measurements which fall into free region in the
static map are detected as dynamic and are displayed in the
rightmost image. After the clustering step, two moving ob-
jects in green boxes are identified and correctly corresponds
to the car and the motorbike.

Note that our map updating procedure makes use of results
from moving object detection step. Measurements detected
as dynamic are not used to update the map in SLAM.
For unknown measurements, a priori we will suppose that
they are static until latter evidences come. This will help to
eliminate spurious objects and result in a better map.

Once we are able to detect moving objects we need to
track them in order to estimate their states and predict their
behaviour in the future. Tracking multiple moving objects is
a classical problem. In the general case this problem is very
hard, however it has been shown experimentally that simple
methods are good enough to cope with urban scenarios [33].
In our current work, a simple object tracking scheme as
described in [2] using Global Nearest Neighbourhood (GNN)

and Kalman filter is employed to track detected objects.
A replacement using MHT [9] and Adaptive IMM [6] is
ongoing.

V. EXPERIMENTAL RESULTS

Our proposed approach for SLAM and DATMO is tested
on dataset collected with the INTERSAFE-2 Volkswagen
demonstrator car using only laser sensor and odometery. The
maximum measurement range of laser sensor is 150 m with
a horizontal field of view of 156◦ and a different resolution
at different angles with minimum resolution of 1◦ and
maximum resolution of 4◦. The vehicle was driven through a
scenario which is a typical test case for INTERSAFE-2. The
demonstrator vehicle moves straight on a road then it stops to
turn left on an intersection, meanwhile two vehicles coming
from opposite side cross the demonstrator and a cyclist also
moves in front of the vehicle.

In our implementation, the width and height of local grid
map are set to 90 m and 108 m respectively, and the grid
resolution is set to 30 cm. Every time the vehicle arrives at
40 m from the grid border, a new grid map is created. The
local SLAM and DATMO is run for every new laser scan.

The results of local SLAM and DATMO are shown in Fig.
7. The images in the first row represent on-line maps and
objects moving in the vicinity of the vehicle are all detected
and tracked. The current vehicle location is represented by
blue box along with its trajectories after corrected from the
odometery. The red points are current laser measurements
that are identified as belonging to dynamic objects. The green
boxes indicate detected moving objects. The second row has
the corresponding images of the scenario.



Fig. 8. Sensor Data Fusion Architecture.

In Fig. 7, the first column shows a left turn scenario where
the demonstrator car is turning left and a cyclist is going to
right in front of the vehicle. This cyclist is detected and
tracked. In the second column we have a scenario where
a moving vehicle is coming from opposite direction and
demonstrator is crossing a vehicle on its right. In both
of the cases, precise trajectories of the demonstrator are
achieved and local maps around the vehicle are constructed
consistently.

VI. DISCUSSION AND FUTURE WORKS

We have presented an approach to accomplish online
mapping and moving object tracking simultaneously. Exper-
imental results have shown that our system can successfully
perform a real time mapping and moving object tracking
from a vehicle at high speeds in different dynamic outdoor
scenarios. This is done using a fast scan matching algorithm
that allows estimating precise vehicle locations and building
a consistent map surrounding of the vehicle. After a consis-
tent local vehicle map is built, moving objects are detected
and tracked reliably.

As has been mentioned that this work is related to
INTERSAFE-2 project which is about safety on the in-
tersections. The target vehicle as well as infrastructure at
the intersections are equipped with many sensors. A key
future work is about the fusion of data from these sensors
at different levels of abstraction and tracking of moving
objects(Fig. 8). We are planning fusion on the following
levels:
• Low level fusion with stereo vision. We will use occu-

pancy grid framework for this fusion. Although there
are other options available but first we are planning to
construct two occupancy grids one for laser and one
for stereo camera and use some grid fusion technique
to integrate the two grids. As we have constructed
occupancy grid for laser another team working on data
from stereo vision will construct occupancy grid using
elevation maps [20]. One simple fusion technique might
be to use mi = max(mlaser

i ,mcam
i ) where mlaser

i

is a cell of laser occupancy grid and mcam
i is the

corresponding cell of stereo camera occupancy gird. Al-
though this a pessimistic map, one cell occupied in one
sensor is occupied in final map, but it has advantages
on Bayes filter approach when sensors with different
characteristics are fused. We will also experiment with
other techniques like the ones mentioned in [10].

• Middle level fusion with stereo vision. One other option
that we will explore for vision data is the fusion
at detection level, object segments detected in vision
and laser scans will be fused together to get a more
consolidated view.

• High level fusion with radars. At this level objects
detected and tracked with laser-vision and radar sensors
will be fused together to get more information about the
environment.

• High level fusion with infrastructure sensors. Another
important aspect of INTERSAFE-2 is that the infras-
tructure at intersections is also equipped with off board
sensors, vehicle will also receive object lists from these
off board sensors. So we will also integrate off board
sensor information with on-board sensor information to
construct a complete view of the environment. These off
board information will be especially useful for the areas
not visible from the vehicle, so called blind spots, and
will reduce the accident in those parts of intersections.

After objects have been detected tracking of the objects is
imperative in order to understand and assess the situation
around the vehicle. We also plan to use the MHT using
Adaptive IMM [30] techniques developed by our group for
object tracking.

We also intend to incorporate object models and road mod-
els that give a more meaningful representation of detected
objects with specific shapes and sizes instead of only sets of
contour points as in our current work.

VII. CONCLUSION

We have presented an approach to accomplish on-line
mapping and moving object tracking simultaneously. Exper-
imental results have shown that our system can successfully
perform a real time mapping and moving object tracking
from a vehicle at high speeds in different dynamic outdoor
scenarios. This is done based on a fast scan matching
algorithm that allows estimating precise vehicle locations and
building a consistent map surrounding of the vehicle. After
a consistent local vehicle map is build, moving objects are
detected and tracked reliably.

Future works include fusion with stereo vision at low
and middle levels, with radars and infrastructure sensors at
high level.We also intend to incorporate object models and
road models that give a more meaningful representation of
detected objects with specific shapes and sizes instead of
only sets of contour points.
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