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Abstract—In this paper, we present a real-time algorithm
for local simultaneous localization and mapping (SLAM) with
detection and tracking of moving objects (DATMO) in dynamic
outdoor environments from a moving vehicle equipped with
a laser scanner and two radars. To correct vehicle location
from odometry we introduce a new fast implementation of
incremental scan matching method that can work reliably in
dynamic outdoor environments. After a good vehicle locatin
is estimated, the surrounding map is updated incrementally
and moving objects are detected without a priori knowledge b
the targets. Detected moving objects are finally tracked by a
Multiple Hypothesis Tracker (MHT) coupled with an adaptive
IMM (Interacting Multiple Models) Filter. The experimenta |
results on datasets collected from different scenarios shcas:
urban streets, country roads and highways demonstrate the
efficiency of the proposed algorithm on a Daimler Mercedes
demonstrator in the framework of the European Project
PReVENT-ProFusion2.

. INTRODUCTION

Perceiving or understanding the environment surroundirlf_:ln
of a vehicle is a very important step in driving assistan&I
systems or autonomous vehicles. The task involves bo ¥
simultaneous localization and mapping (SLAM) and de . . .
tection and tracking of moving objects (DATMO). While perfor.m perception tasks. In this context, ourarchl.ta:tuls_
SLAM provides the vehicle with a map of static parts Ofbeen integrated and tested on two demonstrators: a Daimler-
the environment as well as its location in the map, DATM(i\Aerc_:edes demons_trator and a Volvo truck de_monstrator [7].
allows the vehicle being aware of dynamic entities aroun n this paper, We give an overview of our arch|tec_ture, focus
tracking them and predicting their future behaviors. It iéhg on the description of the first level of the architectund a

believed that if we are able to accomplish both SLAM an&how some results on the Daimler-Mercedes demonstrator

DATMO in real time, we can detect every critical situationd"°v'NY at high speed. ) .
The rest of the paper is organized as follows. In the next

to warn the driver in advance and this will certainly improve . .
driving safety and can prevent traffic accidents. section, we present the Daimler Mercedes demonstrator. A

Recently, there have been considerable research effoﬁ'gef overview of our architecture is given in sectod Illeb
focusing 0|'1 these problems [13][9][18][19]. However fOrscription of first level of architecture is detailed in SeafiM

highly dynamic outdoor environments like crowded urbar?econd level is summarized in sectiad V. Experimental

streets, there still remains many open questions. TheE%SUItS are given in Sectidl VI and finally in Sectinlvl

include, how to represent the vehicle environment, ho\ﬁonclusmns and future works are discussed.

to obtain a precise location of the vehicle in presence of

dynamic entities, and how to differentiate moving objects”' THE DAIMLER MERCEDES DEMONSTRATOR

and stationary objects as well as how to track moving objects The Daimler Mercedes demonstrator car is equipped with

over time. a camera, two short range radar sensors and a laser scanner
In this context, we design and develop a generic archiFig.[). The radar sensor is with a maximum range ah30

tecture to solve SLAM and DATMO in dynamic outdoorand a field of view of 80. The maximum range of laser

environments. This architecture (FIJ. 2) is divided intatw sensor is 86 with a field of view of 160 and a horizontal

main parts: the first part where the vehicle environment igesolution of 2. In addition, vehicle odometry information

mapped, fusion between different sensors is performed asdch as velocity and yaw rate are provided by the vehicle

moving objects are detected; and the second part where

previously detected moving objects are verified and tracked *www.prevent-ip.org/profusion

Fig. 1. The Daimler Mercedes demonstrator car.

is architecture is currently used in the framework of the
ropean project PReVENT-ProFudlorThe goal of this
project is to design and develop generic architectures to



a good global map is not necessary, so that the problem of

revisiting or loop closing in SLAM is not considered in this
work. For this reason, we propose an incremental mapping

Objects Detection approach based on a fast laser scan matching algorithm in

order to build a consistent local vehicle map. The map is
updated incrementally when new data measurements arrive
Objects List along with good estimates of vehicle locations obtained
from the scan matching algorithm. The advantages of our
incremental approach are that the computation can be

Track to Objects . . .
Association carried out very quickly and the whole process is able to
run online.

1) Notation: Before describing our approach in detail, we

introduce some notations used in the paper. We denote the
discrete time index by the variabte the laser observation
from vehicle at timet by the variablez = {Z,...,Z'}
including K individual measurements corresponding Ko
laser beams, the vector describing an odometry measurement

sensors. The measurement cycle of the sensor systemff@m timet—1 to timet by the variablew;, the state vector

40ms Images from camera are for visualization purpose. describing the true location of the vehicle at timéy the
variablex;.

Trackin

To|Users

Fig. 2. Architecture of the perception system

1. GENERAL ARCHITECTURE

We design and develop a generic architecture (Hig. 2) to 2) Occupancy Grid Map:In the occupancy grid repre-
solve SLAM and DATMO in dynamic outdoor environments.sentation, the vehicle environment is divided into a two-
In the first part of the architecture, to model the environdimensional latticeM of rectangular cells and each cell
ment surrounding the vehicle, we use the Occupancy Grid associated with a measure taking a real valugOir]
framework developed by Elfes [6]. Compared with featureindicating the probability that the cell is occupied by an
based approaches, grid maps can represent any environm@pstacle or not. A high value of occupancy grid indicates
and are specially suitable for noisy sensors in outdodhe cell is occupied and a low value means the cell is free.
environments where features are hard to define and extra&uppose that occupancy states of individual grid cells are

In general, in order to perform mapping or modellingindependent, the objective of a mapping algorithm is to es-
the environment from a moving vehicle, a precise vehiclémate the posterior probability of occupanyM; [x1+,z11)
localization is essential. To correct vehicle locationsnir for each cell of gridVi;, given observationg 1 = {z,...,z}
odometry, we introduce a new fast laser-based incremengfl corresponding known pos&g; = {X1,...,% }.
localization method that can work reliably in dynamic envi- In the literature, many methods are used for occupancy
ronments. When good vehicle locations are estimated, by igrid mapping, such as Bayesian [6], Dempster-Shafer [12]
tegrating laser measurements we are able to build a comisistand Fuzzy Logic [11]. Here we apply Bayesian Update
grid map surrounding of the vehicle. Finally by comparingscheme [17] that provides an elegant recursive formula to
new measurements with the previously constructed locapdate the posterior under log-odds form:
vehicle map, dynamic objects then can be detected.

Finally, sensor data coming from different sensors are log O(Mi[x11,211) = 109 O(Mi | X11-1, Z11-1) +
fused. +10gO(Mi |z, %) —logO(M;) (1)

In the second part, detected moving objects in the ve-whereO(a|b) = oddga|b) = P(a|b) / (1— P(a|b))
hicle environment are tracked. Since some objects may be
occluded or some are false alarms, multi objects tracking @), P(Mi) is the prior occupancy probability of the map
helps to identify occluded objects, recognize false alarmhich is set to (b representing an unknown state, this

and reduce mis-detections. makes this component disappear. The remaining probability
P(Mi|%,%), is called theinverse sensor modelt specifies
IV. FIRST LEVEL the probability that a grid celM; is occupied based on a

In this section, we detail the first level of the architecturesingle sensor measuremegtat locationx. In our imple-
Environment Mapping & Localization, Moving Objects De-mentation, it is decided by the measurement of the nearest
tection and Sensor Data Fusion. beam to the center mass of the cell.

] ) o It is easy to see that the desired probability of occupancy,
A. Environment Mapping & Localization P(M;|x11,211), can be recovered from the log-odds

Since our radar sensors provide pre-filtered data at obja&presentation. Moreover, since the updating algorithm is
level as lists of target points, so to perform mapping, onlyecursive, it allows for incremental map updating when new
laser data is used. To our safety vehicle navigation purpossensor data arrives.



3) Localization in Occupancy Grid Magdn order to build
a consistent map of the environment, a good vehicle loce
ization is required. Because of the inherent error, using on
odometry often results in an unsatisfying map. When featurt
can not be defined and extracted, direct scan matching tec
nigues like ICP [3] can help to correct the odometry erroi
The problem is that sparse data in outdoor environments a
dynamic entities make correspondence finding difficult. On
important disadvantage of the direct scan matching metho
is that they do not consider the dynamics of the vehicle
Indeed we have implemented several ICP variants [15] ar
found out that scan matching results are unsatisfactory al
often lead to unexpected trajectories of vehicle. This i
because matching only two consecutive scans may be ve:y
hard, ambiguous or weakly constrained, especially in cartdo
environment and when the vehicle moves at high speedS-Fig. 3. The probabilistic velocity motion mod@(x |%_1,ut) of the vehicle
An alternative approach that can overcome these limleft) and its sampling version (right).
tations consists in setting up the matching problem as a
maximum likelihood problem. In this approach, given an
underlying vehicle dynamics constraint, the current ssan’ For the measurement mod®(z | %, M;_1), mixture beam-
position is corrected by comparing with the local grid mapgased model is widely used in the literature [8][9]. However
constructed from all observations in the past instead ¢fe model come at the expense of high computation since it
only with one previous scan. By this way, we can reduceequires ray casting operation for each beam. This can be a
the ambiguity and weak constraint especially in outdodimitation for real time application if we want to estimate a
environment and when the vehicle moves at high speedsrge amount of measurements at the same time. To avoid ray
Mathematically, we calculate a sequence of posg&,,... casting, we propose an alternative model that only consider
and sequentially updated malgls, My, ... by maximizing the end-points of the beams. Because it is likely that a beam
marginal likelihood of thet-th pose and map relative to the hits an obstacle at its end-point, we focus only on occupied
(t—1)-th pose and map: cells in the grid map. A voting scheme is used to compute
the probability of a scan measurementgiven the vehicle
% = argmax(P(z | x,M_1) . P(% | %_1,u)} (2) Posex and the mapv_; constructed so far. First, from the
X vehicle locationx, individual measuremerd is projected

into the coordinate space of the map. Qatf the grid cell

In the equation[{2), the ter®(z |%,M;_1) is the mea- . ) e
surement model which is the probability of the most reporrespondlng to the projected end-point of each befartf

cent measuremers given the posex and the maphh_y this cell is occupied, a sum proportional to the occupancy

. ; value of the cell will be voted. Then the final voted score
constructed so far from observationg 1 at corresponding oo i
osesxiy_; that were already estimated in the past Théepresents the likelihood of the measurement. Baw/)
P = . . denote the posterior probability of occupancy of the grid

term P(x |XF71’U‘) represents th.e motion _mod_el which Scell M estimated at time (following @), we can write the
the probability that the vehicle is at locatiogq given that L
measurement model under the sum following:

the vehicle was previously at positiof ;1 and executed an

action u;. The resulting pose; 7is then used to generate a K itk hitk _
new mapM; according to[): P(z[x,M-1) 0 5 {P(M_3) so thatM,~; is occupied
K=1
Me =M1 U{%,2} 3) (4)

The proposed method is just an approximation to the mea-
Now the guestion is how to solve the equatibh (2), but let usurement model because it does not take into account vis-
first describe the motion model and the measurement modhility constraints, but experimental evidences show ftihat

used. works well in practice. Furthermore, with a complexity of
For the motion model, we adopt the probabilistic velocityO(K), the computation can be done rapidly.
motion model similar to that of [17]. The vehicle motion It remains to describe how we maximidd (2) to find the

is comprised of two components, the translational velogity correct pose;- Hill climbing strategy in [16][9] can be used
and the yaw ratey. Fig.[d depicts the probability of being but may suffer from a local maximum. Exploiting the fact
at locationx given previous locatiorx,_; and controlu;.  that the measurement model can be computed very quickly,
This distribution is obtained from the kinematic equationswe perform an extensive search over vehicle pose space. A
assuming that vehicle motion is noisy along its rotatiomal a sampling version of the motion model (FIg. 3 right) is used
translational components. to generate all possible poses given the previous pose



X1 and the controli. The resulting pose will be the poseby SLAM described in the previous section, a local dynamic
at which the measurement probability achieves a maximugrid mapD is created to store information about previously
value. Because of the inherent discretization of the ghd, t detected moving objects. The pose, size and resolution of
sampling approach turns out to work very well. In practicethe dynamic map is the same as those of the static map.
with a grid map resolution of 20 cm, it is enough to generatBEach dynamic grid cell store a value indicating the number
about four or five hundreds of pose samples to obtain a goad observations that a moving object has been observed at
estimate of the vehicle pose with the measurement liketihodhat cell.
that is nearly unimproved even with more samples. The total From these remarks, our moving object detection process
computational time needed for such a single scan matchingiss carried out in two steps as follows. The first step is to
about 10 ms on a low-end PC. An example of scan matchinfptect measurements that might belong to dynamic objects.
result is shown in Figll4. The most likely vehicle pose idHere for simplicity, we will temporarily omit the time index
obtained when the laser scan is aligned with the occupiggiven a new laser scam the corrected vehicle location
parts of the map and at the same time the vehicle dynamiaad the local static mapM computed by SLAM and the
constraint is satisfied. dynamic mapD containing information about previously

Besides the computational effectiveness, one attraction detected moving objects, state of a single measuremfent
our algorithm is that it is not affected by dynamic entitieds classified into one of three types following:
in the environment. Since we only consider occupied cells, ) i
spurious regions in the occupancy grid map with low static : My = occupied
occupancy probability that might belong to dynamic objects statez) = dynamic @My = freeorDyy > a
do not contribute to the sunf](4). Since a large part of undecided : My = unknown
measurements belong to stat!c quects, the voting Sc.her\pv‘ﬁerehitk is the coordinate of the grid cell corresponding to
ensures that measurement likelihood reach a maximuiil, " 4 o oint of the beagf anda is a predefined threshold
only when the laser scan is aligned with the static parts P . ‘P ‘

. . The second step is after dynamic measurements are de-

of the environment. To some meaning, measurements

from dynamic entities can be considered as outliers of thtgrmlned, moving objects are then identified by clustering

alignment process. This property is very useful for movin gnd-points of these beams into separate groups, each group

object detection process that will be described in the ne%?presgnts a single objegt. T\.NO p0|r_1ts are considered as
. elonging to the same object if the distance between them

section. :

is less than B m.

4) Local mapping: Because we do not need to build a b'.:'gj{E_'l_l::JStlritteS trle. descrlg)ed_ stte?; |n_?et§ctlnghmov[[rr1]g

global map nor deal with loop closing problem, only ong>PJECtS. The [eltmost Image depicts Ihe situation where the

online map is maintained at each point in time representinVehICIe IS moving along a s_treet Seeing a car moving ahead
d a motorbike moving in the opposite direction. The

the local environment surrounding of the vehicle. The size g . . . .
ddle image shows the local static map and the vehicle

the local map is chosen so that it should not contain loops atjl?a‘ " ted by SLAM and th ] :
the resolution is maintained at a reasonable level. Everg ti ocation computed by an € current faser scan I

the vehicle arrives near the map boundary, a new grid mapij :&nxarei}éwngeugé rgthzw:;ﬂiiagrﬂtz:;esi;e?éog(ljnirt1htehe
reinitialized. The pose of the new map is computed accordin P ynam piay:
htmost image. After the clustering step, two moving ob-

to the vehicle global pose and cells inside the intersectioects in areen boxes are identified and correctly corressond
area are copied from the old map. J ng X ' ” y P

to the car and the motorbike.
B. Moving Objects Detection Note that our map updating procedure makes use of results
After a consistent local map of the vehicle is constructefOM moving object detection step. Measurements detected

from SLAM, moving objects can be detected when ne/S dynamic are not used to update the map in SLAM.
measurements arrive. The principal idea is based on the' unknown mea_surementts, a prior we W|Il_sup_pose that
inconsistencies between observed free space and occuptiléﬁy_ are statlc. until Ia.tter evidences come. This will help t
space in the local grid map. If an object is detected on gliminate spurious objects and result in a better map.

location previously seen as free space, then it is a movin
object. If an object is observed on a location previousl
occupied then it probably is static. If an object appears in a After moving objects are identified from laser data, we
previously not observed location, then we can say nothingpnfirm the object detection results by fusing with radaadat
about that object. and provide the detected objects with their velocities. For
Another important clue which can help to decide a objeatach moving object detected from laser data as described in
is dynamic or not is evidence about moving objects detectete previous section, a rectangular bounding box is caiedla
in the past. For example, if there are many moving objectnd the radar measurements which lie within the box region
passing through an area then any object that appears in tha¢ then assigned to corresponding object. The velocity of
area should be recognized as a potential moving object. Fbre detected moving object is estimated as the average of
this reason, apart from the local static mdpas constructed these corresponding radar measurements.

. Fusion with radars



saGrE = a1 score = 0.92 score =0.17

Fig. 4. An example of localization

Fig. 5. Moving object detection example. See text for mortitie

Figure[® shows an example of how the fusion proces®quire the definition of a specific motion model of tracked
takes place. Moving objects detected by the Laserscanmasjects to predict their positions in the environment. gsin
are displayed in red with green bounding boxes. The targetsis prediction and some observations, in a second stage,
detected by two radar sensors are represented as smadkciran estimation of the position of each object present in the
in different colors along with corresponding velocitiese W environment is computed.
can see in the radar field of view, that two objects detected |n this section, we briefly summarize the four different

by the Laserscanner are also seen by two radars so tipgirts of the second level of the architecture (fidlire 2) teesol

they are confirmed and their velocities are estimated. Rad@fe different parts of multi-objects tracking (More degail
measurements that do not correspond to any dynamic objegfuld be found in [5]):

or fall into another region of the grid are not considered. ) . . . . .
« The first one is the gating. In this part, taking as input

V. SECOND LEVEL predictions from previous computed tracks, we compute
In general, the multi objects tracking problem is complex:  the set of new detected objects which can be associated
it includes the definition of tracking methods, but also asso to each track.
ation methods and maintenance of the list of objects cuyrent « In a second part, using the result of the gating, we
present in the environment [2][17]. Regarding trackinghtec perform objects to tracks association and generate as-

nigues, Bayesian filters [1] are generally used. Thesedilter  sociation hypothesis, each track corresponding to a
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Fig. 6. Moving object detected from laser data is confirmeddar data.

previously known moving object. Output is composed ofvhere the demonstrator car is moving at 50 kph on a country
the computed set of association hypothesis. This taskiiead. A car moving ahead and two other cars in the opposite
solved using the Multiple Hypothesis Tracking (MHT) direction are all recognized. Note that the two cars on the
algorithm [2]. left lane are only observed during a very short period of time
« In the third part called tracks management, tracks ateut both are detected and tracked successfully. The third
confirmed, deleted or created according to the associsituation in the middle, the demonstrator is moving quite
tion results and a pruned set of association hypothesstowly at about 20 kph in a crowded city street. Our system
is output. is able to detect and track both the other vehicles and the
« In the last part corresponding to the filtering stepmotorbike surrounding. In all three cases, precise trajet
estimates are computed for 'surviving’ tracks and preef the demonstrator are achieved and local maps around the
dictions are performed to be used the next step of theshicle are constructed consistently. In our implemeotati
algorithm. However, defining a suitable motion model ishe computational time required to perform both SLAM and
a real difficulty. To deal with this problem, Interacting DATMO for each scan is about 2030 ms on a 1.86GHz,
Multiple Models [10][14] have been successfully ap-1Gb RAM laptop running Linux. This confirms that our
plied in several applications. In [4], we have developedlgorithm is absolutely able to run synchronously data
a fast method to adapt on-line IMM according to tra-cycle in real time. More results and videos can be found at
jectories of detected objects and so we obtain a suitakig¢ t p: // enpti on. 1 nri al pes.tr/~tdvu/vi deos/|

and robust tracker.
VII. CONCLUSIONS AND FUTURE WORKS

VI. EXPERIMENTAL RESULTS We have presented an approach to accomplish online

The detection and tracking results are shown in Elg. tmapping and moving object tracking simultaneously. Exper-
The images in the first row represent online maps anithental results have shown that our system can successfully
objects moving in the vicinity of the vehicle are detectegerform a real time mapping and moving object tracking
and tracked. The current vehicle location is represented lisom a vehicle at high speeds in different dynamic outdoor
blue box along with its trajectories after correction fromet scenarios. This is done based on a fast scan matching
odometry. The red points are current laser measuremeigorithm that allows estimating precise vehicle locagion
that are identified as belonging to dynamic objects. Greeamd building a consistent map surrounding of the vehicle.
boxes indicate detected and tracked moving objects withfter a consistent local vehicle map is built, moving obgect
corresponding tracks displayed in different colors. Infar are detected and are tracked using an adaptive Interacting
tion on velocities is displayed next to detected objects Multiple Models filter coupled with an Multiple Hypothesis
available. The second row are images for visual referencaacker.
to corresponding situations.

In Fig. [, the leftmost column depicts a scenario where Vill. ACKNOWLEDGMENTS
the demonstrator car is moving at a very high speed of aboutThe work is supported by the European project PReVENT-
100 kph while a car moving in the same direction in fronProFusion, and partially by the Délégation Général@rpo
of it is detected and tracked. On the rightmost is a situatiodArmement (DGA).
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Fig. 7. Experimental results show that our algorithm carcsssfully perform both SLAM and DATMO in real time for diffemt environments
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