
 

 

 

  

Abstract—In this paper, we present a vehicle safety 

application based on data gathered by a Laserscanner and 2 

short range Radars that recognizes unavoidable collisions with 

stationary objects before they take place in order to trigger 

restraint systems. Two different software modules are 

compared that perform the processing of raw data and deliver a 

description of the vehicle’s environment. A comprehensive 

experimental evaluation based on relevant crash and non-crash 

scenarios is presented.  

I. INTRODUCTION 

N recent years, a lot of research has been done to develop 

safety applications which help to prevent accidents or 

mitigate their consequences. The automatic recognition of 

imminent collisions plays an important role in making traffic 

more safe. The earlier a potential collision is detected, the 

more possibilities are available to protect car passengers and 

other road users. In this document, we describe a system to 

detect frontal collisions. In case a crash is predicted to 

happen within the next 200 milliseconds, the system triggers 

reversible belt pretensioners which bring the passenger into 

an upright position that is more safe during the crash and 

removes the belt slack in advance. 

 The perception of the environment in front of the vehicle 

is based on data from a Laserscanner and two short range 

Radars. The advantage of the Laserscanner lies in its large 

field of view and its high angular and range resolution and 

 
Manuscript received January 10, 2008. This work was supported 

in part by the Information Society of the European Union under the 

Contract No. 507075 in the framework of the integrated Project 

PReVENT.  

S. Pietzsch is with the Technische Universitaet Muenchen, Chair 

for Image Understanding and Knowledge-based Systems and works 

currently for the Daimler AG, 89081 Ulm, Germany (phone: +49 

731 505 2236; fax: +49 731 505 4105; e-mail: uni-

muenchen.pietzsch@daimler.com)  

O. Aycard, J. Burlet and T.D. Vu are with the Laboratoire 

d’Informatique de Grenoble, Grenoble, France (e-mail: 

olivier.aycard@inrialpes.fr, jburlet@inrialpes.fr, tdvu@inrialpes.fr) 

T. Hackbarth, N. Appenrodt and Dr. J. Dickmann are with the 

Department for Environment Perception, Research Centre of the 

Daimler AG, 89081 Ulm, Germany (e-mail: 

thomas.hackbarth@daimler.com, nils.appenrodt@daimler.com, 

juergen.dickmann@daimler.com) 

B. Radig is with the Technische Universitaet Muenchen, Chair 

for Image Understanding and Knowledge-based Systems, Garching, 

Germany (e-mail: radig@cs.tum.edu) 

accuracy. Radar sensors are in common use for driver 

assistant systems in cars and complements the system due to 

immediate velocity measurements and the use of an 

additional emission type. 

  An experimental vehicle was equipped with sensors and 

processing hardware to demonstrate the operational 

capability of the safety function in real time. It is described 

in more detail in Section II. 

The project comprises two different software modules for 

sensor data processing that were developed independently by 

the Daimler AG (module 1) and INRIA (module 2). 

Module 1 uses grid-based segmentation of the Laserscanner 

data and Kalman filter techniques for the tracking of objects. 

Module 2 is based on simultaneous localization and mapping 

techniques (SLAM) together with the detection and tracking 

of moving objects. The environment is modeled using an 

Occupancy Grid. Detected moving objects are tracked by a 

Multiple Hypothesis Tracker (MHT) coupled with an 

adaptive Interacting Multiple Models filter (IMM). Our 

evaluation compares the performance of both modules on the 

basis of the output of a common Precrash decision module 

by means of missed and false alarm rates  in complex crash 

and non-crash maneuvers with stationary objects, 

respectively. 

 The remainder of this document is organized as follows: 

In Section II the experimental vehicle together with the used 

sensors are described. Section III deals with the technical 

and scientific background of sensor data processing. It gives 

an overview over the methods that are used within the 

modules for environmental perception. The results from 

testing the system in various driving scenarios are presented 

in Section IV. Finally, Section V summarizes the presented 

content and gives suggestions for further work.   

II. EXPERIMENTAL VEHICLE AND USED SENSORS 

The experimental vehicle, a Mercedes-Benz E-Class, is 

equipped with an Ibeo “ALASCA” Laserscanner mounted 

below the number plate and two M/A-COM “SRS100” 

24 GHz short range Radar prototypes mounted in the front 

bumper besides the number plate. The Laserscanner is 

hermetically covered by a box having a black plastic 

faceplate which is transparent for the emission wavelength 

while the Radars are mounted behind the serial plastic 

Results of a Precrash Application based on Laserscanner and Short 

Range Radars 

Sylvia Pietzsch, Olivier Aycard, Julien Burlet, Trung Dung Vu, Thomas Hackbarth, Nils Appenrodt, 

Juergen Dickmann and Bernd Radig 

I 



 

 

 

bumper. The technical specifications of the sensors are listed 

in Table I. 

The Radar sensors and the Laserscanner controller are 

connected to a controller unit in the trunk by private CAN 

and Ethernet, respectively. This real time unit hosts a 

366 MHz Motorola Power-PC-processor which runs the 

software for sensor data processing, segmentation, object 

generation, tracking, sensor data fusion and activation 

decision.  
TABLE  I 

TECHNICAL DATA OF THE SENSORS 

Property Laserscanner Short range Radar 

Angle   160° 80° 

Angle accuracy +/- 0.5° +/- 5...10° 

Range  0.3 -  80 m 0.2 - 30 m 

Range accuracy   +/- 5 cm +/- 7.5 cm 

Scan frequency 25 Hz 25 Hz 

 

In case of unavoidable collisions the reversible seatbelt 

pretensioners of the front seats are deployed via a private 

CAN. An additional PC in the trunk acts as a display server 

connected to a monitor in front of the co-drivers seat to 

visualize the environment perception and the activation 

decision. The architecture of the vehicle is shown in 

Figure 1. 
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Fig. 1.  Hardware architecture of the experimental vehicle showing 

sensors, actuators, computers and interconnects. 

 
 

Fig. 2.  Visualization of the environment perception on the in-vehicle 

screen. The Inset shows the scene recorded by the camera behind the 

windshield. 

 

Figure 2 shows a cutout of the screen exactly at the 

moment of deployment when the car approaches a foam cube 

with a constant speed of 50 km/h.  

On the screen, the targets seen by the Laserscanner and the 

Radars are shown as small dots and circles, respectively. The 

colors symbolize the mounting side of the Radars and 

accordingly the 4 vertical beam layers of the Laserscanner. 

The object segments, generated from the scanner targets, are 

depicted as rectangles. The actual TTC (time to crash) of 174 

ms corresponds to a distance of 2.4 m. The inset of the figure 

shows the appropriate picture of the in-vehicle camera which 

is used for documentation purposes only. 

 

III. PERCEPTION MODULES 

Within the framework of the EU-funded subprojects 

APALACI und PROFUSION2 of the Integrated Project 

PReVENT, different modules were developed which 

perform the signal processing of the single sensors and their 

fusion. The result is a description of the vehicle’s 

surrounding environment with static and moving objects 

contained in it. Based on the state vector (position, velocity, 

orientation angle) that the module estimated for each object 

relative to the ego-vehicle, the application decides 

afterwards, whether an inevitable collision will take place 

within the next 200ms. Furthermore, the Precrash application 

is i. e. dealing with the suppression of ghost targets and the 

plausibility check to ensure a robust system behaviour. In the 

following, we will describe the mode of operation of each 

perception module. 

A. Module 1: Grid-based Segmentation, Mid-level Fusion 

and Tracking using Kalman Filter  

Grid-based methods have proven to be efficient to process 

raw data provided by a Laserscanner. In this module, 

developed at the Daimler AG, a grid approach is used for 

segmentation of the laser scan points. The segmentation grid 

is designed according to the scanner’s measuring method. 

Scan points are processed in polar coordinates. Therefore, 

the dimensions of the grid denote angle and distance. The 

cell size increases with the distance to the scanner and the 

absolute value of the angle, thus enabling a good 

segmentation even in cases when some target points are lost 

near the border of the field of view due to low reflected 

intensity. All scan points of all four vertical layers of the 

Laserscanner are projected onto the grid. If the number of 

measurements within a grid cell exceeds a given threshold 

the cell is marked as occupied. With this threshold the grid 

works as a filter for outliers. Neighbouring occupied cells are 

connected to form one segment, afterwards. The procedure is 

illustrated in Figure 3. 

This method allows for fast processing of the laser scans. 

The grid design influences the segmentation quality. Ideally, 

a segment should not contain more than one real object and 

an object should not split up into several segments. 

Therefore, the dimensions of the grid cells have to be chosen 

carefully. If the grid cells are too large, neighbouring objects 

tend to be merged to one segment. Otherwise, if the grid 

cells are too small, a compact object splits into many small 

segments. Knowledge on the properties of expected 



 

 

 

participants in traffic scenes helps to find a suitable grid 

design. 

 

 
 

Fig. 3.  Segmentation of laser scan points using a grid. Left: Projection 

of all scan points onto the grid. Middle: Marking of grid cells with more 

points than a threshold. Right: Connecting of neighbouring marked grid 

cells and labelling. 

 

From the obtained segments, features that describe the 

properties of an object like dimension or orientation angle 

can be extracted. For feature extraction, the minimum angle 

point, the point with the shortest distance to the scanner and 

the maximum angle point are used to define a rectangular 

segment.  

The measurements of the Laserscanner and the short range 

Radars are combined using a midlevel fusion approach 

which is illustrated in the structure within the large frame in 

Figure 4. Laserscanner data is processed in the way 

described above. The Radar sensors deliver filtered and 

pretracked targets. Both, the Radar targets and the scanner 

targets which correspond to the segments derived in the 

preprocessing step are fused within the tracking step. 
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Fig. 4. System architecture. Sensor processing, fusion and tracking are 

realized by each module independently. The structure inside the large 

frame depicts the perception module 1. Situation analysis and the 

decision step are the same for both perception modules.   

 

For object tracking, standard Kalman filter technique is 

used. The state vector of an object consists of the x- and y-

position, the x- and y-component of the velocity and the 

orientation angle. Of course, the orientation angle can only 

be updated by laser measurements as the Radar sensors 

deliver point targets only. Conflicts in associating new 

measurements to existing objects are resolved using the 

Global Nearest Neighbourhood (GNN) method. Already 

tracked objects, that are not found again in the actual time 

cycle are kept and will only be deleted if no corresponding 

object can be assigned during some cycles in succession. If 

on the other hand an object can not be associated to any 

existing track, a new one is created. 

The Situation Analysis and Decision Modules right from 

the large frame in Figure 4 are common for the use of either 

perception module. Subsequent steps calculate for all objects 

in the environment in front of the vehicle, whether they 

potentially hit the sensor vehicle according to the prediction 

of their movement, and the time to collision (TTC), if 

applicable. The decision for or against an imminent collision 

is supported by considering statistical data of the object 

(variance of the velocity in x direction, lifetime and number 

of tracks).  

In general, laser measurements are able to describe the 

position and shape of real existing objects very accurately. 

Radar sensors help to suppress ghost targets or targets based 

on objects that are irrelevant for Precrash applications like 

plants or steam coming out of street drains. All in all, the 

presented Precrash system based on a Laserscanner fused 

with short range Radars reliably detects different kinds of 

collisions with stationary objects in front of the car, as our 

evaluation in Section IV will show.      

B. Module 2: Grid Based Fusion with Moving Object 

Detection and Tracking 

The perception module developed by the e-Motion group 

(http://emotion.inrialpes.fr) of LIG Laboratory and INRIA 

Rhône Alpes is based on the approach called grid based 

fusion [1]. The idea of this approach is to develop a new 

framework to multi-sensor fusion called occupancy grids 

(OGs) [2]. An OG is a stochastic tessellated representation of 

spatial information that maintains probabilistic estimates of 

the occupancy state of each cell in a lattice. In this 

framework, each cell is considered separately for each sensor 

measurement, and the only difference between cells is the 

position in the grid. The main advantage of this approach is 

the ability to integrate several sensors in the same 

framework, taking the inherent uncertainty of each sensor 

reading into account, contrary to the geometric paradigm. 

The major drawback of the geometric approach is the 

number of different data structures for each geometric 

primitive that the mapping system must handle: segments, 

polygons, ellipses, etc. 

Taking into account the uncertainty of the sensor 

measurements for each sequence of different primitives is 

very complex, whereas the cell-based framework is generic 

and therefore can fit every kind of shape and be used to 

interpret any kind and any number of sensors. For sensor 

data integration, OGs only require a sensor model which is 

the description of the probabilistic relation that links a sensor 

measurement to a cell state, occupied or empty.  

As our objective is to have a robust perception using 

multi-sensor approaches to track the different objects 

surrounding a car, the grid based fusion approach is 

combined with multi-objects tracking techniques.  
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Fig. 5. The fusion grid based architecture (module 2). This Module 

replaces the large frame in Fig. 4 when running the second application 

variant. 

 

The whole architecture is depicted in Figure 5 [1] and is 

composed of two levels :  

1) The fusion and extraction level where the environment is 

mapped and sensor data fusion is performed using 

occupancy grids and finally the moving objects are 

extracted from the grid [3]. 

2) The tracking level where the objects present in the 

environment are tracked using the Multiple Hypothesis 

Tracking (MHT) method [4]. 

In the next part, we describe in detail both levels of our 

architecture.  

 

1)  Fusion and Detection  level 

 

a) Mapping the environment  using occupancy grids 

The vehicle environment is divided into a two-dimensional 

lattice of rectangular cells and each cell is associated with a 

measure taking a real value in between 0 and 1, indicating 

the probability that the cell is occupied by an obstacle. A 

high value of an occupancy grid indicates the cell is occupied 

and a low value means the cell is free. Assuming that 

occupancy states of individual grid cells are independent, the 

objective of a mapping algorithm is to estimate the posterior 

probability of occupancy for each cell of the grid. The lattice 

of cells is a type of Markov field and many assumptions can 

be made about the dependencies between cells and especially 

adjacent cells in the lattice. In the used approach, 

independent sensor models are used for each cell, which is a 

strong hypothesis but very efficient in practice since all 

calculus could be made for each cell separately. It leads to an 

expression of a joint distribution for each cell permitting to 

update the probability of occupancy. Details of the 

simultaneous localization and mapping (SLAM) technique 

can be found in [1, 3], the used sensor models refer to [5, 6]. 

 

b) Extraction of moving objects 

Figure 6 illustrates the detecting of moving objects. The 

leftmost image depicts the situation where the vehicle is 

moving along a street seeing a car moving ahead and a 

motorbike moving in the opposite direction.  

 
Fig. 6. Example for moving object detection. The blue rectangle 

represents the ego-vehicle. 

 

The middle image shows the local static map and the 

vehicle location with the current laser scan drawn in red. 

Measurements which fall into a free region in the static map 

are detected as dynamic and are displayed in the rightmost 

image. After the clustering step, two moving objects are 

identified (in green boxes) which correctly correspond to the 

car and the motorbike. 

 

c) Fusion with radars 

After moving objects are identified from laser data, we 

confirm the object detection results by fusing with radar data 

and provide the detected objects with their velocities.  For 

each moving object detected from laser data as described in 

the previous section, a rectangular bounding box is 

calculated and the radar measurements which lie within the 

box region are then assigned to corresponding object. The 

velocity of the detected moving object is estimated as the 

average of these corresponding radar measurements. 

 

 
Fig. 7. A moving object detected from laser data is confirmed by radar 

data. 

 

    Figure 7 shows an example of how the fusion process 

takes place. Moving objects detected by the Laserscanner are 

displayed in red with green bounding boxes. The targets 

detected by two radar sensors are represented as small circles 

in different colors along with corresponding velocities. We 

can see in the radar field of view, that two objects detected 

by the Laserscanner are also seen by two radars so that they 

are confirmed and their velocities are estimated. Radar 

measurements that do not correspond to any dynamic object 

or fall into another region of the grid are not considered. 

 

2) Tracking level 

 In this part of our architecture, a Multiple Hypothesis 

Tracker (MHT) is used to solve the association problem of 

new extracted objects with tracks, each track corresponding 

to a previously known moving object.  It also permits to 

detect and reject spurious extracted objects (generated by 



 

 

 

sensors' noise) and to identify new moving objects incoming 

in the sensors' range.  

 The basic principle of MHT is to generate and update a set 

of association hypotheses during process. An hypothesis 

corresponds to a specific probable assignment of 

observations with tracks. By maintaining and updating 

several hypotheses, none irreversible association decisions 

are made and ambiguous cases are solved in further steps.     

As shown in Figure 5, our multi-object tracking method is 

composed of four different parts: 

• The first one is the gating. In this part, taking as input 

predictions from previous computed tracks, we compute the 

set of new detected objects which can be associated to each 

track. 

• In a second part, using the result of the gating, we perform 

object to tracks association and generate association 

hypotheses, each track corresponding to a previously known 

moving object. The output is composed of the computed set 

of association hypotheses. 

• In the third part, called track management, tracks are 

confirmed, deleted or created according to the association 

results which yield final track trees as output. 

• In the last part corresponding to the filtering step, estimates 

are computed for ’surviving’ tracks and predictions are 

performed to be used in the next step of the algorithm. In this 

part we use an adaptive method based on Interacting 

Multiple Models (IMM) permitting to deal with motion 

uncertainties. More details about this efficient method are 

given in [7][8]. 

Illustrating the perception module results in three different 

types of scenarios which are shown in Figure 8. The images 

in the first row represent online maps, and objects moving in 

the vicinity of the vehicle are detected and tracked. The 

current vehicle location is represented by a blue box along 

with its trajectories after being corrected from the odometry. 

The red points are current laser measurements that are 

identified as belonging to dynamic objects. Green boxes 

indicate detected and tracked moving objects with 

corresponding tracks displayed in different colors. 

Information on velocities is displayed next to detected 

objects if available. The second row are images for visual 

references to corresponding situations. 

    In Figure 8, the leftmost column depicts a scenario where 

the ego-vehicle is moving at a very high speed of about 100 

km/h while a car moving in the same direction in front of it is 

detected and tracked. On the rightmost is a situation where 

the ego-vehicle is moving at 50 km/h on a country road. A 

car moving ahead and two other cars in the opposite 

direction are all recognized. Note that the two cars on the left 

lane are only observed during a very short period of time but 

both are detected and tracked successfully. In the third 

situation depicted in the middle, the ego-vehicle is moving 

quite slowly at about 20 km/h in a crowded city street. More 

results and videos can be found at 

http://emotion.inrialpes.fr/∼tdvu/videos/. 

 

 
 

Fig. 8.  Results obtained using the perception module for different 

environments. 

 

IV. EXPERIMENTAL RESULTS 

The application has been validated in complex crash and 

non-crash scenarios. To conduct the experiments, we built up 

a comprehensive database that consists of short sequences of 

measurements recorded during predefined driving 

maneuvers. These maneuvers comprise factual and near 

missed collisions with stationary objects at different 

velocities, in curves, with deceleration, sudden lane changes 

and lane changes of a leading vehicle obstructing the sight to 
TABLE II 

RESULTS FOR COMPLEX NON-CRASH SCENARIOS 

False alarms/False alarm rate 
Scenario 

Ego velocity [km/h] 
Number of tests 

Module 1 Module 2 

Near-missed passing of cylinder 40, 60 9 0 / 0% 0 / 0% 

Near-missed passing of cube 40, 60 6 0 / 0% 0 / 0% 

Near-missed passing of cylinder after curve (45°) 40, 60 29 0 / 0% 3 / 10.3% 

Emergency brake, distance to cylinder after brake 

not greater than 1.5m 
40, 60 (at start) 19 1 / 5.3% 1 / 5.3% 

Lane change maneuver to avoid a collision with a 

cube 
30, 40, 50, 60, 70 22 0 / 0% 0 / 0% 

Gate passing 30, 50 6 0 / 0% 0 / 0% 

Gate passing after curve (45°) 30, 50 4 0 / 0% 0 / 0% 

Total  95 1 / 1.1%    4 / 4.2% 

 

 



 

 

 

the obstacle. In the maneuvers, foam cubes and cylinders 

served as crash objects. To measure the quality, we counted 

the false alarms that occurred in non-crash scenarios and the 

missed alarms in case a collision was not detected by the 

application. Table II compares the results for the non-crash 

scenarios for the two different modules and Table III lists the 

results for the crash scenarios.  

As a general result it can be stated that a reliable collision 

detection is achieved with both perception modules. Whereas 

Module 1 enables a lower false alarm rate, the crash 

detection rate of Module 2 is very high (98.1%). The three 

false alarms in the scenario where we pass the cylinder in a 

curve occurred in cases of getting extremely close to the 

obstacle. In contrast, no false alarms occurred at all when the 

vehicle suddenly changes the lane to avoid a collision with 

an obstacle standing on the road. Emergency brake 

maneuvers challenge the tracking system because of the 

divergent motion scheme. In our evaluation, only 1 out of 19 

test drives resulted in a false alarm for each module.  

In a second experiment we tested the application in normal 

traffic on highways, rural roads and in urban areas. To 

achieve representative results we performed the test drives 

during day time to cover different traffic situations like rush 

hour, traffic jam and stop-and-go. Furthermore, the test 

drives were partly conducted under adverse weather 

conditions like rain, fog, wet roads and traffic spray. All in 

all, we covered a distance of 1600 km, running the 

application in real time. There were no wrongly detected 

collisions in any of these environments. 

V. CONCLUSION AND OUTLOOK 

In this paper we compared two approaches that perform 

the data processing and object generation fusing 

Laserscanner and short range Radar sensors. The obtained 

description of the vehicle’s environment in terms of static 

and moving objects serves as a basis for safety systems that 

trigger restraint systems in case an unavoidable collision will 

take place.  

Comprehensive tests show, that a good detection 

performance for frontal collisions is achieved with both 

approaches. The application was running stable in a hard 

real-time environment and has been extensively tested in real 

traffic scenarios. The function has been demonstrated in a 

public event during the 2007 PReVENT IP Exhibition in 

Versailles. 

Future works will extend the perception modules in order 

to improve the detection of collisions with moving objects 

and with the major goal to shift the activation decision in a 

time region greater than 200 ms. This includes the 

refinement of motion models and object models to give a 

more meaningful representation of detected objects with 

specific shapes and behavior. 
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TABLE III 

RESULTS FOR COMPLEX CRASH SCENARIOS 

Missed alarms/Missed alarm rate 
Scenario 

Ego velocity [km/h] 
Number of tests 

Module 1 Module 2 

Collision with cylinder, varying points of impact 20, 40 24 0 / 0% 0 / 0% 

Collision with (paper) cylinder at high speed, 

varying points of impact 
60, 120 8 2 / 25.0% 0 / 0% 

Collision with cube, point of impact has high offset 40 7 0 / 0.0% 1 / 14.3% 

Collision with cylinder after curve (30°, 45°) 30, 40, 60 20 2 / 10.0% 0 / 0% 

Collision with cylinder or cube after emergency 

brake 
20, 40 (at crash time) 7 0 / 0% 0 / 0% 

Collision with (paper) cylinder after emergency 

brake at high speed 
60, 80 (at crash time) 9 2 / 22.2% 0 / 0% 

Collision with cylinder after lane change maneuver 40, 50 23 1 / 4.3% 1 / 4.3% 

Collision with cylinder after leading car lane 

change 
40, 50 4 0 / 0% 0 / 0% 

Total  102   7 / 6.9% 2 / 1.9% 

 


