
Dense Mapping for Telemetric Sensors:
efficient algorithms and sparse representation

Blind Submission. Paper-ID [140]

Abstract— This paper focuses on efficient occupancy grid
building based on a sparse new grid representation: wavelet
occupancy grids and a new update algorithm for telemetric
sensors. The update algorithm takes advantage of the natural
multiscale properties of the wavelet expansion to update only
parts of the environement that are modified by the sensor
measurements and at the proper scale. The sparse wavelet
representation coupled with an efficient algorithm presented in
this paper provides efficient and fast updating of occupancygrids.
It leads to real-time results especially in 2D grids and for the
first time in 3D grids. Experiments and results are discussedfor
both real and simulated data.

I. I NTRODUCTION AND PREVIOUS WORK

The Simultaneous Localization And Mapping (SLAM) issue
has found very convincing solutions in the past few years,
especially in 2 dimensions. Thanks to a number of contribu-
tions [1] [2] [3] [4] [5] [6], it is now feasible to navigate
and build a map while maintaining an estimate of the robot’s
position in an unknown 2D indoor environment on a planar
floor. In these 2D conditions, the problem is theoretically and
practically solved even in populated environment [7]. Some
of the most impressive approaches are based on grid-based
fast-slam algorithms [8] [3] [4], which offers a unified frame-
work for landmark registration and pose calculation thanks
to occupancy grids (OG) [9]. There are several advantages
in doing so. They provide robots with the ability to build an
accurate dense map of the static environment, which keeps
track of all possible landmarks and represents open spaces
at the same time. Only a simple update mechanism, which
filters moving obstacles naturally and performs sensor fusion,
is required. In contrast to other methods, there is no need
to perform landmark extraction as the raw data from range
measurements are sufficient. One of the benefits is accurate
self positioning, which is particularly visible in the accuracy of
the angle estimate. However, the major drawback is the amount
of data required to store and process the grid, as a grid that
represents the environment has an exponential memory cost
in the number of dimensions. In 2D SLAM, this drawback is
overcome by the sheer power of the computer and its huge
memory. But this issue cannot be avoided for 3D SLAM
even with today’s desktop computing capabilities. Recently
methods to deal with the 3D instance of the SLAM problem,
in undulating terrains [6] have used landmark extraction,
clustering and a special algorithm for spurious data detection.
However, this map framework does not handle out-of-date data
and hence the extra cost of removing or updating data coming
from past poses of moving objects is not considered.
In this paper, we choose to use OGs and we present a new

algorithm called wavelet hierarchical rasterization thathierar-
chically updates the wavelet occupancy grid in the relevant
area of the environment. It does not require, as with other
approaches [10], any intermediate representation for adding
observations in the wavelet grid. This leads to real-time dense
mapping in 2D and we propose a special instance of this
algorithm that performs well enough for real-time 3D grid
modelling. This method is intrinsically multi-scale and thus
one of its major advantages is that the mapping could be
performed at any resolution or with any precision in an
anytime way.
There exists a large panel of dense mapping techniques:
amongst the other popular representations of dense 3D data
are raw data points [5], triangle mesh [11] [12] or elevation
maps [13], [14]. However there are major drawbacks in using
such representations. With clouds of points it is not easy to
generalize: roughly speaking, there is no simple mechanismto
fill in the holes. Moreover, the clouds of points are generated
by the successive records of telemetric measurements, thusthe
amount of data is prohibitive after a few hours of recording.
The triangle mesh representation is a kind of 21

2-D map and
the space representation is also incomplete. In simple elevation
maps [11], for the same reasons, holes in the environment such
as tunnels are not part of the set of representable objects. This
problem is overcome in [14] since there is a little number
of vertical steps for each part of the map. The worst point
is that most of these methods lack a straightforward data
fusion mechanism. In particular, it is rarely simple to include
information on the absence of features. Triangle mesh [12] and
elevation maps [14] suffer most from this problem. Therefore
most of the time these representations are obtained as a batch
processing or for a little environment.
For telemetric sensors OGs represent the probability for the
presence of a reflective surface at any world location. There-
fore the ability to update the map for both the presence and
the absence of data is a major advantage, which we call
the evolution property. With OGs this property comes not
from a batch process but is part of the probabilistic map
model definition. The cost is that a huge amount of memory
is needed to cope with the map discretization. In [10], a
wavelet grid based approach was introduced which enables
the representation of grids in a compact but flexible format.
Wavelet occupancy grids, unlike pyramid map representations
where redundant information is stored at each scale, store
at finer scale only the differences with the previous coarser
scale. This representation allows the elimination of redundant
information where there is no additional detail such as for

empty spaces. Furthermore it provides a natural multi-scale
representation with different levels of detail at different scales
of resolution. In order to build the map, a standard approach
will use an intermediate standard grid representation on which
a wavelet transform will be performed. Even if a 2D wavelet
transform can be performed in real-time, the extension to
the case of a 3D transform in real-time is not apparent. So
for a reasonable field of view, it makes the previous method
unfeasible for 3D data. Our algorithm overcomes this difficulty
with a hierarchical strategy that updates only the relevantarea
of the environment and at the proper scale. In a first section,
we will present the wavelet framework and the data structure.
In a second section the sensor model within the occupancy
grid framework for the wavelet space is described. Next, we
present the wavelet hierarchical rasterization algorithm. Lastly,
we present our results in 2D on real data and in simulated 3D
data where correct localisation is provided. Although in all
the paper the algorithm is described for any kind of telemetric
sensor, the implementation and the experimental section are
with laser data only.

II. WAVELETS

In this paper, the occupancy state is represented as a spatial
function. Our main contribution is an occupancy updating
technique that can be performed in a compact manner. At
the heart of the method is wavelet representation which is
a popular tool in image compression. Indeed, there exists a
similarity between OGs and images [9]. The wavelet transform
known as the Mallat algorithm successively averages each
scale, starting from the finest scale (1 right to left). This
mean produces an oracle to predict the information at finer
cells, then only differences from the oracle are encoded. This
averaging produces the next coarser scale and differences with
neighboring samples at the fine scale gives the associated so
called detail coefficients. There is no loss of information in
that process since the information contained in the finer scale
can be recovered from its average and detail coefficients. Since
two neighboring samples are often similar, a large number of
the detail coefficients turn out to be very small in magnitude,
truncating or removing these small coefficients from the rep-
resentation introduces only small errors in the reconstructed
signal, giving a form of “lossy”signal compression. Lossless
compression is obtained by removing only zero coefficients.
In this paper wavelets are just used as a special kind of
vector space basis that allows good compression. Details about
wavelet theory is beyond the scope of this paper and references
can be found in [15] [16] [17].

A. Notations

Wavelets are built from two set of functions: scaling and
detail functions (also known as wavelet functions). Scaling
functions,Φ(x), capture the average or lower frequency infor-
mation and a scaling coefficient is notedsl

t . Detail functions,
Ψ(x), capture the higher frequency information and a detail
coefficient for a detail functionf is noteddl

t, f . The set of
wavelet basis functions can be constructed by the translation

and dilation of the scaling and detail functions. Thus each of
the basis function or coefficient is indexed by a scalel and a
translation indext. Moreover a detail function is indexed by
its type f . In this paper, the non-standard Haar wavelet basis
is used. For non-standard Haar wavelet basis, there is only one
mother scaling function and 2d−1 mother wavelet functions,
whered is the dimension of the signal. Expanding a function
O in the Haar wavelet basis is described as:

O(x) = s−N
0 Φ−N

0 +
l=0

∑
l=−N

∑
t

∑
f

dl
t, f Ψl

t, f , (1)

where f is an index from 1 to 2d−1, andN the level such
that the whole grid appears as one cell. As can be seen in
eq. 1, only one scaling coefficient and one scaling function
are required in the expansion of any functionO(x). As shown
in fig. 1, the scaling coefficients at other levels are computed
as part of the decompression (left to right) or compression
(right to left) process.
The scaling coefficient for a certain levell and translationt
holds the average of values contained in the support of the
scaling function. The support of any Haar basis function in
dimensiond is a d-cubee.g. a square in 2D and a cube in
3D. If the finest level is 0 and coarser levels are indexed by
decreasing negative integers, the side of such ad-cube is 2−l

where the unit is in number of samples at level 0.

10

0

5

5 Φ−2
0

original image wavelet reconstruction

(a)

8

2

5 Φ−2
0 +

5 Φ−2
0 +

5 Φ−2
0 +

3 Ψ−2
0

8 Φ−1
0

8 Φ−1
1

3 Ψ−2
0 +3 Ψ−2

0 +
1 Ψ−1

0 −2 Ψ−1
11 Ψ−1

0 −2 Ψ−1
1

−1 Ψ0
0 +2 Ψ0

1 +0 Ψ0
2−0Ψ0

3

(b)

Fig. 1. The 1D image (upper, left) is:[8,10,9,5,0,0,4,4], and its
unnormalized (used here because it is simpler to display) Haar representation
is: [5,3,1,−2,0,0]. The image is then reconstructed one level at a time as
follows: [5]→ [5+ 3,5− 3] = [8,2]→ [8+ 1,8− 1,2− 2,2+ 2] = [9,7,0,4]
and so on. Here 0 is the finest scale index or the scale where data is gathered
and−2 is the coarsest scale.

B. Tree structure

The key step in a wavelet decomposition is the passage from
one scale to another. The support of a Haar wavelet function at
level l is exactly partitioned by the support of the 2d wavelet
functions at levell + 1, (see Fig. 1 for dimension 1). This
leads to a quadtree for the case of 2D space and octree for 3D
space that hierarchically maps the whole space. A node of the

tree stores 2d−1 detail coefficients and potentially 2d children
that encode finer details if they are necessary to reconstruct
the expanded function. The key step of a node creation is
described figure 2.

slt1
Φl

t1

slt2
Φl

t2
slt3

Φl
t3

slt4
Φl

t4

sl+1
t Φl+1

t

dl
t ,1 dl

t ,2

dl
t ,3

Tree Node

Wavelet Transform Step

Fig. 2. A key step of a Haar wavelet transform in 2D. 4 scaling samples
at scalel generates 1 coarser scaling coefficient at scalel + 1 and 3 details
coefficients at scalel that are stored in a wavelet tree node. In general the tree
node has 4 children that described finer resolutions for eachspace subdivision.
But if each child is a leaf and has only zero details coefficients then all the
child branches can be pruned without information loss. And the tree node
becomes a leaf.

This data structure is exactly a 2d-tree, but it not only
stores spatially organized data, but also summarizes the data
at different resolutions. The root of the tree stores the scaling
coefficient at the coarsest level and the support of the corre-
sponding scaling function includes all the spatial locations of
the signal data.

III. O CCUPANCY GRIDS AND TELEMETRIC SENSOR

MODELS

OG is a very general framework for environment modelling
associated with telemetric sensors such as laser range-finders,
sonar, radar or stereoscopic video camera. Each measurement
of the range sensor consist of the range to the nearest obstacle
for a certain heading direction. Thus a range measurement
divides the space into three area: anemptyspace before the
obstacle, anoccupiedspace at the obstacle location and the
unknownspace everywhere else. In this context, an OG is
a stochastic tessellated representation of spatial information
that maintains probabilistic estimates of the occupancy state
of each cell in a lattice [9]. In this framework, every cell are
independently updated for each sensor measurement, and the
only difference between cells is their positions in the grid.
The distance which we are interested in, so as to define cell
occupancy, is the relative position of the cell with respect
to the sensor location. In the next subsection, the Bayesian
equations for cell occupancy update are specified with cell
positions relative to the sensor.

A. Bayesian cell occupancy update.

a) Probabilistic variable definitions:

• Z a random variable1 for the sensor range measurements
in the setZ .

• Ox,y ∈O ≡ {occ,emp}. Ox,y is the state of the cell(x,y),
where(x,y) ∈ Z

2. Z
2 is the set of indexes of all the cells

in the monitored area.
b) Joint probabilistic distribution:the lattice of cells is a

type of Markov field and in this article sensor model assumes
cell independence. This leads to the following expression of a
joint distribution for each cell.

P(Ox,y,Z) = P(Ox,y)P(Z|Ox,y) (2)

Given a sensor measurementz we apply the Bayes rule to
derive the probability for cell(x,y) to be occupied 3:

p(ox,y|z) =

p(ox,y)p(z|ox,y)

p(occ)p(z|occ)+ p(emp)p(z|emp)
(3)

The two conditional distributionsP(Z|occ) and P(Z|emp)
must be specified in order to process cell occupancy update.
Defining these functions is an important part of many works
([9], [18]) and, in the following, the results in [19] which
proves that for certain choice of parameters2 these functions
are piecewise constants:

p(z|[Ox,y = occ]) =







c1 if z< ρ
c2 if z= ρ
c3 otherwise.

(4)

p(z|[Ox,y = emp]) =







c1 if z< ρ
c4 if z= ρ
c5 otherwise.

(5)

whenρ is the range of the cell(x,y).
As explained in [10], the cell update requires operations that

are not part of the set of wavelet vector operations3 (product
and quotient). Thus a better form is necessary to operate
update on wavelet form of occupancy functions.

B. Log-ratio form of occupancy update

As the occupancy is a binary variable, a quotient between
the likelihoods of the two states of the variable is sufficient to
describe the binary distribution. The new representation used
is:

odd(Ox,y) = log
p([Ox,y = occ])
p([Ox,y = emp])

(6)

1For a certain variableV we will note in upper case the variable, in lower
casev its realization, and we will notep(v) for P([V = v]) the probability of
a realization of the variable.

2The sensor model failure rate, the sensor range discretization and the prior
occupancy probability are the parameters. Prior occupancyis chosen very low,
the world being assumed very empty. Only the last parameter is relevant for
establishing the piece-wise constantness of the functions[19].

3product and quotient are not base inner operators of a vectorspace

 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1
 1.1

-25 -20 -15 -10 -5 0 5 10 15 20 25X cell indices. 0
 50

 100
 150

 200
 250

 300

Y cell indices.

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Occupancy probabilities.

Fig. 3. Update of a 2D OG after a sensor reading, initially each cell
occupancy was unknown,i.e. 0.5 probability. The sensor beam has an aperture
of 7 degrees. The sensor is positioned in (0,0).

In the Bayesian update of the occupancy, the quotient makes
the marginalization term disappear and thanks to a logarithm
transformation, sums are sufficient for the inference:

log
p(occ|z)
p(emp|z)

= log
p(occ)

p(emp)
+ log

p(z|occ)

p(z|emp)

= odd0+odd(z) (7)

Therefore the vector space generated by the wavelet basis
with its sum inner operator is sufficient to represent and update
OGs. This inference with sums was originally proposed by
Elfes and Moravec [9], but only for performance reasons. Here
it is also necessary to allow inference to be performed within
the compressed data.

C. Log-ratio form of sensor model functions

It is straightforward to derive from eq. 4 and 5, the sensor
model equations in log-ratio form that we note as the follow-
ing:

odd(z) =







0 if z> ρ
log(c2/c4) = oddocc if z= ρ
log(c3/c5) = oddemp otherwise.

(8)

whenρ is the range of the cell(x,y). One can notice that the
update term is zero if the cell is beyond the sensor readings,
thus no update is required in this case.

IV. H IERARCHICAL RASTERIZATION OF POLYGON OR

POLYHEDRON

This section describe the main contribution of this article
which consists of a fast algorithm for updating an occupancy
grid expanded as a non-standard Haar wavelet series from a
set of range measurements.

Fig. 4. The hierarchical process of updating the grid: from the coarsest scale
to the finest. To save computing time, area that are outside the polygon of
view or totally included inside the area classified as empty are detected and
processed early in the hierarchy.

A. Problem statement

Given sensor position, beams geometry and measured
ranges, it is possible to define the polygon (fig. 5) or poly-
hedron viewed by the sensor within the grid. Each time the
sensor position changes or measured ranges changes a new
relative position of the polygon or polyhedron and the grid
must be computed in order to update the grid. The standard
approach for updating occupancy grids, in the context of laser
sensors, will be to traverse the cells along each laser sensor
beam and update the cells. This method of traversal induces
difficulties in calculating the area of coverage for each laser
sensor beam in order to avoid inaccuracies such as aliasing.
An easier alternative will be to traverse every cell of the
grid and for each cell, perform a simple test to determine
the state of the cell. In this case, with a grid size of 1024
cells per dimension, a 2D square grid contains more than
1 million cells and a 3D cubic grid contains more than 1
billion. Even if real-time performance can be obtained in 2D,
it does not seem to be the case in 3D. Therefore the problem
is to find a method that efficiently updates the grid without
traversing every cell of the grid. As shown in fig. 5 and eq. 8,
a range measurement defines three sets of cells. The first set,
E, contains cells that are observed as empty. The second set,
U , contains cells that are considered as unknown. The third
set,B (for boundaries), contains cells that are partially empty,
unknown or occupied. The elements of the third set are mainly
found at the boundaries formed by the sensor beams at its two
extreme angles and at the neighborhood of an obstacle. The
remark in section III-C states that theU set can be avoided
in the update process. Therefore an update step must iterate
through the cells that intersect either the polygon in 2D or the
polyhedron in 3D that describe the sensor beam boundaries
(fig. IV). The following describes an algorithm that performs
the correct iteration through the grid in an efficient manner
through the utilisation of wavelets.

B. First hierarchical space exploration

The key idea in the exploration of the grid space is to define
a predicate:existIntersectionthat is true if a given set of grid
cells intersect the volume defined by the field of view of the
sensor beams (blue plus red cells in fig. 5). The absence of
intersection indicates that the given set of cells are outside the
sensor field of view and don’t need updating. For the case of

DD D

DD D

DD D

DD

DD

Cell of E set.

Cell of B set.

Cell of U set.

D

Ω

Fig. 5. A range-finder beam. The range finder is located atΩ and its field of
view is surrounded by red boundaries. It defines the three kind of cell types.
The band within the obstacle lies is at the top right end of thefield of view.
Thus the cells marked with a “D” stand for cells where a detection event
occurs.

existIntersectionevaluating to true, a special sub case would
be when the set of cells are totally included in the sensor field
of view, then all the cells of the set belong toE (blue cells in
fig. 5) and their occupancy are decreased by the same amount
of oddemp, eq. 7.

As the algorithm is able to detect uniform regions recur-
sively, the grid representation should allow the update of
regions, and wavelets provide a natural mechanism for doing
so. In this first version of the algorithm, the grid is traversed
hierarchically following the Haar wavelet support partition.
For each grid area, theexistIntersectionpredicate guides the
search. If there is intersection the traversal reaches deeper into
the grid hierarchy,i.e.exploring finer scales. Otherwise it stops
at the current node. Then the wavelet transform is performed
recursively beginning from this last node as described in fig. 2
for the 2D case.

Algorithm 1 HierarchicalWavRaster(subspaceS, sensor beam
B)

1: for each subspacei of S: i = 0, . . . ,n do
2: if sizeof(i) = minResolution then
3: vi = evalOccupancy(i)
4: else if existIntersection(i, B) then
5: if i ∈ E then
6: vi = oddemp /*eq. 8*/
7: else
8: vi = HierarchicalWavRaster(i, B)
9: end if

10: else
11: vi = 0 /*i ∈U*/
12: end if
13: end for
14: {sl+1,obs

S ,dl ,obs
f1,S

, · · · ,dl ,obs
fn,S
}=waveletTransform({v0, · · · ,vn})

15: for eachdl
f ,S: do

16: dl
f ,S← dl

f ,S+dl ,obs
f ,S /*update inference*/

17: end for
18: returns the scaling coefficientsl+1,obs

S

Algorithm 1 gives the pseudo-code of the first hierarchical
grid traversal. The algorithm is recursive and begins with
the whole grid as the first subspace defined by the root of

the wavelet tree. Its result is used to update the mean of
the wavelet tree which is also the coefficient of the scaling
function at the coarsest level. Thesizeof function get the
resolution of the subspacei andminResolutionrepresents the
resolution of a cell in the grid.
TheevalOccupancyfunction evaluates the occupancy of a cell;
it can proceed by sampling the cell occupancy.
Such an algorithm is very efficient in 2D but as it refines
every area on the sensor beam boundaries it explores at least
all the perimeter of the polygon of view in 2D (red cells in
fig. 5). Equivalently in 3D, the explored part is all the surface
of the polyhedron of view and it is to huge to be explored in
real-time. That is why a better algorithm is required.

C. Improved hierarchical space exploration

In the space were a robot must evolve most of the space is
empty. Thus it is not efficient to begin with a map initialized
with a probability of 0.5 since this probability will evolve
almost every where toward the minimum probabilitypemp.
Equivalently, since each boundary between an area observed
as an empty one and an area outside the sensor field of view
separates cells that are almost all empty, updating occupancy
along this boundary is useless. Following this remark algo-
rithm 1 is modified in a lazy algorithm that investigate finer
iterations through the grid only if an update is required.

S

(a)

S

(b)

Fig. 6. Two different cases for the iteration along a boundary of the field
of view that separatesE set andU set. Fig. 6(a) artificial separation,S (with
waves) was totally empty and the observation of a part of its interior (on the
right of the red boundary) does not bring any information gain. Fig. 6(b) the
separation brings information about the state of the yellowarea that is inside
the field of view (on the right of the red boundary).

An update is almost always required for cells that are in
the obstacle neighborhood (cells marked with ’D’ in fig. 5)
so iteration is always performed in area that contains such
a cell. But for boundaries that separate cells that belongs to
U set and toE set (white and blue cells in fig. 5) iteration
is required only if theE set corrects the knowledge in the
grid (fig. 6(b)) otherwise the iterations can stop early in the

hierarchy (fig. 6(a)).

Algorithm 2 HierarchicalWavRaster(subspaceS, mean occu-
pancy of subspaceS: sl+1

S , empty boundpemp, sensor beamB
)

{vg
0, · · · ,v

g
n}= inverse

2: WaveletTransform({sl+1
S ,dl

f1,S
, · · · ,dl

fn,S
})

for each subspacei of S: i = 0, . . . ,n do
4: if sizeof(i) = minResolution then

vi = evalOccupancy(i)
6: else

spaceState = existIntersection(i, B)
8: if spaceState is UNKNOWNthen

vi = 0
10: else if spaceState is OCCUPIEDthen

vi = HierarchicalWavRaster(i, B)
12: else if spaceState is EMPTY andvg

i > pemp then
vi = HierarchicalWavRaster(i, B)

14: else if spaceState is EMPTYthen
vi = oddemp /*eq. 8*/

16: end if
end if

18: vg
i ← vg

i +vi /*update inference*/
end for

20: {δ l+1
S ,dl

f1,S
, · · · ,dl

fn,S
}=waveletTransform({vg

0, · · · ,v
g
n})

returns the scaling coefficientsl+1,obs
S = sl+1

S − δ l+1
S

In algorithm 2 three main differences appears: first an
inverse wavelet transform is performed to retrieve the in-
formation about the current state of the traversed subspace
(line 1−2). Second, line 7, the intersection function returns
OCCUPIEDonly if the subspace intersect a neighborhood of
an obstacle and it returnsEMPTY if the subspace is included
in E∪U . Third the value of the minimum possible occupancy
pemp is a parameter of the algorithm in order to compare the
state of the traversed subspace with information gain brought
by the sensor observations (line 12).
The major difference between the maps produced by the first
and the second algorithm is that in the second algorithm there
is noa priori unknown area. Thus it is not possible anymore to
store the position of the unexplored parts of the world. This
could be a problem if one wants to drive the robot toward
terra incognita. Nevertheless in the observation processing the
information of unknown area is conserved such that occlusion
are handled at the observation level.
One of the most important part of the previous algorithms
are the intersection queries: the definition ofexistIntersection.
This functions must be really optimized in order to retrieve
fast algorithms. Each kind of telemetric sensor requires its
own implementation ofexistIntersection. A simple implemen-
tation of such a function is easy to write since it involves
only geometric intersection primitives, therefore we willnot
describe extensively one here for a lack of space. In our own
implementation we have used an explicit representation of

algorithm time (ms) map size mem. nb. points nb. cells
alg. 1 (2D) 29 400m×200m 5MB 107.6 106 8 106

alg. 2 (2D) 2.8 400m×200m 5MB 107.6 106 8 106

alg. 2 (3D) 30 (50m)2×20m 23MB 2.4 106 50 106

TABLE I

COMPUTING RESULTS OF THE2 ALGORITHMS IN 2D AND 3D.

polygon or polyhedron of the sensor view with vertices and
edges and implicit representation of a grid cell with its index.
Then polygon-polygon or polyhedron-polyhedron intersection
is computed, if this test fails an inclusion test is performed to
test if one object is included in other.

V. EXPERIMENTS

A. Computing time and required memory

We performed experiments4 on 2D real data with the first
and second algorithm with moving obstacles and on 3D
simulated data with the second algorithm and with only static
obstacles.

In the 2D experiment a big truck equipped with four SICK
LMS-291 at each corner carries a big hot metal container
behind it during a 1.5 hours experiment, the data are noisy and
the evolution property of the map is required by the presence
of a lot of moving obstacles (in particular the hot metal
container). The algorithm processes the 4 laser range-finder
at real-time (40Hz each). Important number for evaluating
algorithm efficiency are described in tab. V-A. Despite the
inverse wavelet transform the second algorithm performs better
than the first one (10 times faster in 2D). The localization
was given by a dedicated algorithm. In the 3D simulation
a rotating sick was simulated. The localization was given
by the simulation and a noise was simulated on the range
measurement. 3D occupancy grids are constructed using the
approach described in this paper and fig. 7(a) and 7(b) shows
two different views of the 3D occupancy iso-surface. In the
3D case the number of nodes in the wavelet tree is 178304
i.e. 5MB of data which compared to the 2414368 3D points
gathered is less than 8%. The required memory of the whole
tree structure is 23MB and the required memory is 200MB
for the complete grid shows that the wavelet representation
saves more than 91% of the required memory compared with
a classic OG representation.

B. Qualitative results

For 2D and 3D grids, comparisons with a standard grid
construction algorithm show that there are no significant
differences. In the 3D results fig. 7, part of the grounds (on the
right of the map) is not entirely mapped because the density
of measurements is not uniform but depends on the vehicle
velocity. As the map is considered emptya priori unseen parts
of the ground appear as holes. Thus it would be interesting to
use a ground model or ground inpainting procedure to initialize
the map. Then, ground measurements would only correct the

4Every experiment was done with an Intel(R) Pentium(R) 4 CPU 3.00GHz.

a priori and that would save a lot of computing time, as the
ground is the main obstacle.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

The objective of this work is to present new algorithms
that make OG building in wavelet space feasible. We show
that wavelet space is naturally a good space to represent huge
functions such as occupancy functions in 3D. In contrast to
previous works, we don’t need intermediate representation
to build and fusion OGs in wavelet space with the new
wavelet hierarchical rasterization algorithms. Thanks tothe
hierarchical organization of the computation, computing time
is definitely sufficient for real-time in 2D and enough for
real-time in 3D. With that achievement, the main contribution
of this work is to present an OG representation which is
also useful in 3D. Our long-term objective is to use the
unified grid-based fast-slam framework in 3D environments.
The requirements for an environment representation suitable
for fast-slam are:

1) fast updating and scan matching to construct the map
and calculate the current robot’s pose in real time,

2) a hierarchical grid representation to handle multiple
maps in multiple particles efficiently,

3) a small amount of memory per grid to ensure efficiency
in the previously stated conditions.

Half of the first requirement and two other are fulfilled by
this work, thus it is now possible to consider, very powerful
algorithms such as a navigation grid-based fast-slam or grid-
based multiple-target tracking in 3D based upon wavelet
occupancy grids.

B. Future Works

In the future we will explore many important areas of
improvement and it opens many research possibilities. As the
intersection query is the most time-consuming part of the
algorithm, we plan to work first on optimizing this part of the
algorithm. Next, we will explore grounda priori to initialize
the map efficiently. Another area of improvement is the kind of
wavelets which is used to compress the map. Haar wavelets are
the poorest kind of wavelets for compression properties, soit
will be interesting to work with higher order wavelets that are
able to compress much complex functions such as quadrics
because it will approximate a map with locally Gaussian
occupancy density in a far better way for example. Finally,
the tree structure of the data allows parallel traversal of the
environment and we plan to develop parallel instances of the
wavelet rasterization algorithm. The proposed algorithm is a
general one and its validity area is theoretically the set ofall
telemetric sensors.We plan to apply this algorithm with other
kinds of telemetric sensors such as a stereo camera. However,
our main objective is now to derive a localization algorithm
based on this grid representation to obtain a complete grid
based slam algorithm in 3D.

REFERENCES

[1] J. Gutmann and K. Konolige, “Incremental mapping of large cyclic en-
vironments,” inProc. of the IEEE International Conference on Robotics
and Automation (ICRA), Monterey, California, November 1999, pp. 318–
325.

[2] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller,
“An atlas framework for scalable mapping,” inProc. of the IEEE
International Conference on Robotics and Automation (ICRA), 2003.

[3] C. Stachniss, G. Grisetti, and W. Burgard, “Recovering particle diversity
in a Rao-Blackwellized particle filter for SLAM after actively closing
loops,” in Proc. of the IEEE International Conference on Robotics and
Automation (ICRA), 2005.

[4] G. Grisetti, C. Stachniss, and W. Burgard, “Improving grid-based slam
with rao-blackwellized particle filters by adaptive proposals and selective
resampling,” inProc. of the IEEE International Conference on Robotics
and Automation (ICRA), 2005, pp. 2443–2448.

[5] D. Cole and P. Newman, “Using laser range data for 3d slam in
outdoor environments,” inProc. of the IEEE International Conference
on Robotics and Automation (ICRA), Florida, 2006.

[6] D. C. P. Newman and K. Ho, “Outdoor slam using visual appearance
and laser ranging,” inProc. of the IEEE International Conference on
Robotics and Automation (ICRA), Florida, 2006.

[7] D. Hähnel, D. Schulz, and W. Burgard, “Map building withmobile
robots in populated environments,” inProc. of the IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2002.

[8] K. P. Murphy, “Bayesian map learning in dynamic environments,” in
NIPS, 1999, pp. 1015–1021.

[9] A. Elfes, “Occupancy grids: a probabilistic framework for robot percep-
tion and navigation,” Ph.D. dissertation, Carnegie MellonUniversity,
1989.

[10] M. Yguel, O. Aycard, and C. Laugier, “Wavelet occupancygrids: a
method for compact map building,” inProc. of the Int. Conf. on Field
and Service Robotics, 2005.

[11] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira,
M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, andD. Fulk,
“The digital michelangelo project: 3D scanning of large statues,” inSig-
graph 2000, Computer Graphics Proceedings, ser. Annual Conference
Series, K. Akeley, Ed. ACM Press / ACM SIGGRAPH / Addison
Wesley Longman, 2000, pp. 131–144.

[12] S. Thrun, C. Martin, Y. Liu, D. Hähnel, R. Emery Montemerlo, C. Deep-
ayan, and W. Burgard, “A real-time expectation maximization algorithm
for acquiring multi-planar maps of indoor environments with mobile
robots,” IEEE Transactions on Robotics and Automation, vol. 20, no. 3,
pp. 433–442, 2004.

[13] M. Hebert, C. Caillas, E. Krotkov, I. S. Kweon, and T. Kanade,
“Terrain mapping for a roving planetary explorer,” inProc. of the IEEE
International Conference on Robotics and Automation (ICRA), vol. 2,
May 1989, pp. 997–1002.

[14] R. Triebel, P. Pfaff, and W. Burgard, “Multi-level surface maps for
outdoor terrain mapping and loop closing,” in”Proc. of the International
Conference on Intelligent Robots and Systems (IROS)”, 2006.

[15] I. Daubechies,Ten Lectures on Wavelets, ser. CBMS-NSF Series in
Applied Mathematics. Philadelphia: SIAM Publications, 1992, no. 61.

[16] S. Mallat,A Wavelet Tour of Signal Processing. San Diego: Academic
Press, 1998.

[17] E. J. Stollnitz, T. D. Derose, and D. H. Salesin,Wavelets for Computer
Graphics: Theory and Applications.Morgan Kaufmann, 1996.

[18] S. Thrun, “Learning occupancy grids with forward sensor models,”
Autonomous Robots,, vol. 15, pp. 111–127, 2003.

[19] M. Yguel, O. Aycard, and C. Laugier, “Efficient gpu-based construction
of occupancy grids using several laser range-finders,”Int. J. on Vehicle
Autonomous System, to appear in 2007.

(a) (b)

Fig. 7. The wavelet OG obtained from a simulation of 3D data gathering with a rotating laser range-finder. Fig. 7(a) and 7(b) two views of the reconstruction
of the grid from the wavelet grid at scale−1 (cell side of 0.20m) and scale−2 (cell side of 0.40m). It is noticeable that salient details as the lamp-post or
the 4 pole landmarks before the wall are accurately mapped. The wall is interestingly smooth too, and that is a feature obtained by the oracle of the scaling
view, details appear at finer views.

