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Abstract— This paper focuses on efficient occupancy grid algorithm called wavelet hierarchical rasterization thigtrar-
building based on a sparse new grid representation: wavelet chically updates the wavelet occupancy grid in the relevant
occupancy grids and a new update algorithm for telemetric 4104 of the environment. It does not require, as with other
sensors. The update algorithm takes advantage of the natuka . ) ” .
multiscale properties of the wavelet expansion to update dwn approaches [_10]’ any |nterme_d|ate_representatlon _forr@jdl
parts of the environement that are modified by the sensor Observations in the wavelet grid. This leads to real-timesde
measurements and at the proper scale. The sparse waveletmapping in 2D and we propose a special instance of this
representation coupled with an efficient algorithm presened in  algorithm that performs well enough for real-time 3D grid
this paper provides efficient and fast updating of occupancyrids. modelling. This method is intrinsically multi-scale anduh

It leads to real-time results especially in 2D grids and for he f it . dvant is that th . id b
first time in 3D grids. Experiments and results are discussedor ©N€ OF IS Major advantages 1s thatl the mapping could be

both real and simulated data. performed at any resolution or with any precision in an
anytime way.
. INTRODUCTION AND PREVIOUS WORK There exists a large panel of dense mapping techniques:

The Simultaneous Localization And Mapping (SLAM) issuamongst the other popular representations of dense 3D data
has found very convincing solutions in the past few yearare raw data points [5], triangle mesh [11] [12] or elevation
especially in 2 dimensions. Thanks to a number of contribmaps [13], [14]. However there are major drawbacks in using
tions [1] [2] [3] [4] [5] [6], it is now feasible to navigate such representations. With clouds of points it is not easy to
and build a map while maintaining an estimate of the robotigeneralize: roughly speaking, there is no simple mechatasm
position in an unknown 2D indoor environment on a plandill in the holes. Moreover, the clouds of points are genetate
floor. In these 2D conditions, the problem is theoreticalig a by the successive records of telemetric measurementsthtus
practically solved even in populated environment [7]. Sonmsmount of data is prohibitive after a few hours of recording.
of the most impressive approaches are based on grid-bageé triangle mesh representation is a kind éf map and
fast-slam algorithms [8] [3] [4], which offers a unified fr@m the space representation is also incomplete. In simplatdev
work for landmark registration and pose calculation thanksaps [11], for the same reasons, holes in the environmeht suc
to occupancy grids (OG) [9]. There are several advantagestunnels are not part of the set of representable objduis. T
in doing so. They provide robots with the ability to build arproblem is overcome in [14] since there is a little nhumber
accurate dense map of the static environment, which keegsvertical steps for each part of the map. The worst point
track of all possible landmarks and represents open spateghat most of these methods lack a straightforward data
at the same time. Only a simple update mechanism, whiftiksion mechanism. In particular, it is rarely simple to urobé
filters moving obstacles naturally and performs sensoiwofysi information on the absence of features. Triangle mesh [A@] a
is required. In contrast to other methods, there is no neelvation maps [14] suffer most from this problem. Therefor
to perform landmark extraction as the raw data from rangeost of the time these representations are obtained as la batc
measurements are sufficient. One of the benefits is accunatecessing or for a little environment.
self positioning, which is particularly visible in the acaay of For telemetric sensors OGs represent the probability fer th
the angle estimate. However, the major drawback is the amopresence of a reflective surface at any world location. There
of data required to store and process the grid, as a grid tfiate the ability to update the map for both the presence and
represents the environment has an exponential memory db& absence of data is a major advantage, which we call
in the number of dimensions. In 2D SLAM, this drawback ithe evolution property. With OGs this property comes not
overcome by the sheer power of the computer and its huigem a batch process but is part of the probabilistic map
memory. But this issue cannot be avoided for 3D SLANhodel definition. The cost is that a huge amount of memory
even with today’s desktop computing capabilities. Regentls needed to cope with the map discretization. In [10], a
methods to deal with the 3D instance of the SLAM problemwyavelet grid based approach was introduced which enables
in undulating terrains [6] have used landmark extractiothe representation of grids in a compact but flexible format.
clustering and a special algorithm for spurious data dietect Wavelet occupancy grids, unlike pyramid map representatio
However, this map framework does not handle out-of-date dathere redundant information is stored at each scale, store
and hence the extra cost of removing or updating data comiagfiner scale only the differences with the previous coarser
from past poses of moving objects is not considered. scale. This representation allows the elimination of refdunt
In this paper, we choose to use OGs and we present a nafermation where there is no additional detail such as for



empty spaces. Furthermore it provides a natural multiescalnd dilation of the scaling and detail functions. Thus each o
representation with different levels of detail at diffetrenales the basis function or coefficient is indexed by a sdatand a

of resolution. In order to build the map, a standard approatfanslation index. Moreover a detail function is indexed by
will use an intermediate standard grid representation oigtwh its type f. In this paper, the non-standard Haar wavelet basis
a wavelet transform will be performed. Even if a 2D wavelds used. For non-standard Haar wavelet basis, there is oy o
transform can be performed in real-time, the extension toother scaling function and®2- 1 mother wavelet functions,
the case of a 3D transform in real-time is not apparent. Sdhered is the dimension of the signal. Expanding a function
for a reasonable field of view, it makes the previous meth@ in the Haar wavelet basis is described as:

unfeasible for 3D data. Our algorithm overcomes this difficu =0
with a hierarchical strategy that updates only the relegaea O(x) = 5N N + > Z Zdtl,fq’{,f, (1)
of the environment and at the proper scale. In a first section, I=-N

we will present the wavelet framework and the data structuignhere f is an index from 1 to 2— 1, andN the level such

In a second section the sensor model within the occupang¥t the whole grid appears as one cell. As can be seen in

grid framework for the wavelet space is described. Next, W&. 1, only one scaling coefficient and one scaling function

present the wavelet hierarchical rasterization algorithastly, 5. required in the expansion of any functiofx). As shown

we present our results in 2D on real data and in simulated 3Pfig. 1, the scaling coefficients at other levels are compute

data where correct localisation is provided. Although ih akg part of the decompression (left to right) or compression

the paper the algorithm is described for any kind of telemetr(right to left) process.

sensor, the implementation and the experimental sectien gfe scaling coefficient for a certain leveland translatiort

with laser data only. holds the average of values contained in the support of the

scaling function. The support of any Haar basis function in

dimensiond is a d-cubee.g.a square in 2D and a cube in
In this paper, the occupancy state is represented as alspaff. |f the finest level is 0 and coarser levels are indexed by

function. Our main contribution is an occupancy updatingecreasing negative integers, the side of suchcabe is 2

technique that can be performed in a compact manner. where the unit is in number of samples at level 0.
the heart of the method is wavelet representation which is

a popular tool in image compression. Indeed, there exists a
similarity between OGs and images [9]. The wavelet tramsfor
known as the Mallat algorithm successively averages each
scale, starting from the finest scale (1 right to left). This
mean produces an oracle to predict the information at finer ﬂ
(

Il. WAVELETS

original image wavelet reconstruction

2
5% >

cells, then only differences from the oracle are encodeis Th
averaging produces the next coarser scale and differerites w
neighboring samples at the fine scale gives the associated so
called detail coefficients. There is no loss of information i
that process since the information contained in the findiesca
can be recovered from its average and detail coefficientseSi | i EACHRATRI 1994240 4049 vl
two neighboring samples are often similar, a large number of | seg* > >
the detail coefficients turn out to be very small in magnitude |~
truncating or removing these small coefficients from the rep |, ﬂ
resentation introduces only small errors in the reconstdic iy
signal, giving a form of “lossy”signal compression. Lossle (b)
compression is obtained by removing only zero coefficients.
In this paper wavelets are just used as a special kind g 1.~ The 1D image (upper, leff) i58,10,9,50,0,4,4, and its

;i . . unnormalized (used here because it is simpler to displagy IHgpresentation
vector space basis that allows good compression. Detailstahis: [5.3,1,-2,0,0]. The image is then reconstructed one level at a time as
wavelet theory is beyond the scope of this paper and refesenfllows: [5] — [5+3,5-3] =[8,2] — [8+1,8-12-2,2+2]=[9,7,0,4
can be found in [15] [16] [17]. and so on. Here 0 is the finest scale index or the scale wheadsdgathered

and —2 is the coarsest scale.
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A. Notations

Wavelets are built from two set of functions: scaling an§- Tree structure
detail functions (also known as wavelet functions). Seplin The key step in a wavelet decomposition is the passage from
functions,®(x), capture the average or lower frequency inforene scale to another. The support of a Haar wavelet function a
mation and a scaling coefficient is notdd Detail functions, levell is exactly partitioned by the support of thé @avelet
W(x), capture the higher frequency information and a detdiinctions at levell + 1, (see Fig. 1 for dimension 1). This
coefficient for a detail functiorf is noted dt',f. The set of leads to a quadtree for the case of 2D space and octree for 3D
wavelet basis functions can be constructed by the traoslatspace that hierarchically maps the whole space. A node of the



tree stores 2— 1 detail coefficients and potentially 2hildren A. Bayesian cell occupancy update.
that encode finer details if they are necessary to reconistruc 4y propapilistic variable definitions:

the e?<pand.ed function. The key step of a node creation 'S, Z a random variabfefor the sensor range measurements
described figure 2.

in the setZ.

o Oyy € 0 ={occemp}. Oyy is the state of the celix,y),
where(x,y) € Z2. Z2 is the set of indexes of all the cells
in the monitored area.

b) Joint probabilistic distribution:the lattice of cells is a
lree/Node type of Markov field and in this article sensor model assumes

cell independence. This leads to the following expressioa o
i 73
ds

4+1¢{+1

Wavelet Transform Steg

joint distribution for each cell.

P(Oxy,Z) = P(Oxy)P(Z|Oxy) )

Given a sensor measuremenive apply the Bayes rule to
derive the probability for cel(x,y) to be occupied 3:

P(oxy|2) =

P(Oxy) P(ZOxy)
plocop(Zoco + plempp(demy )
Fig. 2. A key step of a Haar wavelet transform in 2D. 4 scaliagiples

at scalel generates 1 coarser scaling coefficient at stald and 3 details ~ The two conditional distribution®(Z|occ) and P(Z|emp)
coefficients at scalethat are stored in a wavelet tree node. In general the tr P i

node has 4 children that described finer resolutions for spabe subdivision. ‘?ﬁugt .be specmed In. Ordefr to process cell occupancy Update'
But if each child is a leaf and has only zero details coeffisighen all the D€fining these fu_nctlons IS an Important part _Of many V\_’0rk5
child branches can be pruned without information loss. Amel tree node ( [9], [18]) and, in the following, the results in [19] which
becomes a leaf. proves that for certain choice of paramefetisese functions

are piecewise constants:
This data structure is exactly a-®ee, but it not only

stores spatially organized data, but also summarizes ttee da

c if z
at different resolutions. The root of the tree stores thdirsga o o ! if f p
- P(Z[Oxy=0cd) = { c2if z=p 4)
coefficient at the coarsest level and the support of the €orre ;
: X e : . c3 otherwise.
sponding scaling function includes all the spatial locadiof _
the signal data. ¢ ifz<p
P(Z[Oxy =emg) = Caif z=p )

cs otherwise.
IIl. OccuPANCY GRIDS AND TELEMETRIC SENSOR

MODELS whenp is the range of the cellx,y).

As explained in [10], the cell update requires operatioas th

OG is a very general framework for environment modelling"® Nnot part of the set of wavelet vector operatiofiproduct
associated with telemetric sensors such as laser rangargind@nd quotient ). Thus a better form is necessary to operate
sonar, radar or stereoscopic video camera. Each measurerHfate on wavelet form of occupancy functions.
of the range sensor consist of the range to the nearest bstac Log-ratio form of occupancy update
for a certain heading direction. Thus a range measuremen
divides the space into three area: emptyspace before the
obstacle, arpccupiedspace at the obstacle location and th
unknownspace everywhere else. In this context, an OG
a stochastic tessellated representation of spatial irdtom
that maintains probabilistic estimates of the occupanatest oddOyy) = log P([Oxy = 0cq) ©6)
of each cell in a lattice [9]. In this framework, every celear Y p([Oxy =empd)
indepe_ndently updated for each Sens-or me-asurement’ anq trl1|?0r a certain variabl® we will note in upper case the variable, in lower
only d,lﬁerence b_etween Cel_ls is their .posmons in the_ grlqasev its realization, and we will notg(v) for P([V =V]) the probat’JiIity of
The distance which we are interested in, so as to define celkalization of the variable.
occupancy, is the relative position of the cell with respect®The sensor model failure rate, the sensor range discietizand the prior

to the sensor location. In the next subsection, the Bayesgfupancy probability are the parameters. Prior occupancosen very low,
’ world being assumed very empty. Only the last paramsteglévant for

equgtions for _Ce" occupancy update are specified with cglfapiishing the piece-wise constantness of the funcfitis
positions relative to the sensor. 3product and quotient are not base inner operators of a veptre

53\3 the occupancy is a binary variable, a quotient between
e likelihoods of the two states of the variable is suffitien
escribe the binary distribution. The new representateedu
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A. Problem statement

Fig. 3.  Update |?f a_ZDOOG atf)tet:'ra sensor feaditf)‘gv i”gia”yheae” Given sensor position, beams geometry and measured
occupancy was unknownge. 0.5 probability. The sensor beam has an apertur P . - -
of 7 degrees. The sensor is positioned in (0,0). Fanges, it is possible to define the polygon (fig. 5) or poly-

hedron viewed by the sensor within the grid. Each time the
sensor position changes or measured ranges changes a new

In the Bayesian update of the occupancy, the quotient makglative position of the polygon or polyhedron and the grid

the marginalization term disappear and thanks to a logariti"ust bé computed in order to update the grid. The standard
transformation, sums are sufficient for the inference: approach for updating occupancy grids, in the context afrlas
sensors, will be to traverse the cells along each laser senso

beam and update the cells. This method of traversal induces

p(ocdz) p(occ) p(zloco) difficulties in calculating the area of coverage for eactefas
log p(empz) = log p(emp) lo p(zlemp) sensor beam in order to avoid inaccuracies such as aliasing.
= odd+ odd(z) @) An easier alternative will be to traverse every cell of the

grid and for each cell, perform a simple test to determine

Therefore the vector space generated by the wavelet b4 state of the cell. In this case, with a grid size of 1024
with its sum inner operator is sufficient to represent ancated C€!IS_per dimension, a 2D square grid contains more than
OGs. This inference with sums was originally proposed bl Million cells and a 3D cubic grid contains more than 1
Elfes and Moravec [9], but only for performance reasonseHe_'P'"'on- Even if real-time performance can be obtained in, 2D

it is also necessary to allow inference to be performed withit 40€S not seem to be the case in 3D. Therefore the problem
the compressed data. is to find a method that efficiently updates the grid without

traversing every cell of the grid. As shown in fig. 5 and eq. 8,
a range measurement defines three sets of cells. The first set,
E, contains cells that are observed as empty. The second set,

It is straightforward to derive from eq. 4 and 5, the sensbt. contains cells that are considered as unknown. The third

model equations in log-ratio form that we note as the followset, B (for boundaries), contains cells that are partially empty,
ing: unknown or occupied. The elements of the third set are mainly

found at the boundaries formed by the sensor beams at its two
extreme angles and at the neighborhood of an obstacle. The

C. Log-ratio form of sensor model functions

Oifz>p remark in section IlI-C states that thé set can be avoided
oddz) = log(cy/c4) = 0dahec if z=p (8) in the update process. Therefore an update step must iterate
log(cs/cs) = oddkmp Otherwise. through the cells that intersect either the polygon in 2Dher t

polyhedron in 3D that describe the sensor beam boundaries
whenp is the range of the cellx,y). One can notice that the (fig. IV). The following describes an algorithm that perfam
update term is zero if the cell is beyond the sensor readingse correct iteration through the grid in an efficient manner
thus no update is required in this case. through the utilisation of wavelets.

B. First hierarchical space exploration
IV. HIERARCHICAL RASTERIZATION OF POLYGON OR

POLYHEDRON The key idea in the exploration of the grid space is to define
a predicateexistintersectiorthat is true if a given set of grid
This section describe the main contribution of this articleells intersect the volume defined by the field of view of the
which consists of a fast algorithm for updating an occupansgnsor beams (blue plus red cells in fig. 5). The absence of
grid expanded as a non-standard Haar wavelet series frormi@rsection indicates that the given set of cells are dattie
set of range measurements. sensor field of view and don’t need updating. For the case of



the wavelet tree. Its result is used to update the mean of
DR the wavelet tree which is also the coefficient of the scaling
® 215 [ ] cellofEset function at the coarsest level. Thezeof function get the
o\p resolution of the subspadeand minResolutiorrepresents the
el D Cell of B set. resolution of a cell in the grid.
TheevalOccupancfunction evaluates the occupancy of a cell;
()| D Cell of U set. it can proceed by sampling the cell occupancy.
Such an algorithm is very efficient in 2D but as it refines

Fa s A fnder b - inder is located and its field of every area on the sensor beam boundaries it explores at least
ig. 5. A range-finder beam. The range finder is locate@ and its field o . : . .
view is surrounded by red boundaries. It defines the three &frcell types. E_l” the pe”_meter Of_the polygon of view in _2D (red cells in
The band within the obstacle lies is at the top right end offitiel of view.  fig. 5). Equivalently in 3D, the explored part is all the seda

Thus the cells marked with a “D" stand for cells where a datecevent of the polyhedron of view and it is to huge to be explored in
oceurs: real-time. That is why a better algorithm is required.

existintersectiorevaluating to true, a special sub case woulff- IMProved hierarchical space exploration

be when the set of cells are totally included in the sensat fiel |n the space were a robot must evolve most of the space is
of view, then all the cells of the set belongBo(blue cells in  empty. Thus it is not efficient to begin with a map initialized
fig. 5) and their occupancy are decreased by the same amaiiih a probability of 05 since this probability will evolve
of odtkmp, €. 7. almost every where toward the minimum probabiliymp

As the algorithm is able to detect uniform regions recugquivalently, since each boundary between an area observed
sively, the grid representation should allow the update @k an empty one and an area outside the sensor field of view
regions, and wavelets provide a natural mechanism for doig@parates cells that are almost all empty, updating ocoypan
so. In this first version of the algorithm, the grid is traw&fs along this boundary is useless. Following this remark algo-
hierarchically following the Haar wavelet support paditi rithm 1 is modified in a lazy algorithm that investigate finer
For each grid area, thexistintersectiorpredicate guides the jterations through the grid only if an update is required.
search. If there is intersection the traversal reachesaiéeio
the grid hierarchyi.e. exploring finer scales. Otherwise it stops

at the current node. Then the wavelet transform is performed
recursively beginning from this last node as described inZig //, //,
for the 2D case. /1 /1
Algorithm 1 HierarchicalWavRaster( subspagesensor beam
B)
1: for_ egch subspac_leofS|:_O,...,ndo AAN NN AAN. oy
2. if sizeoff) = mmRespIqun then PVAPAA AN AR
3 Vi = evz?\IOccupangyI /\/\/\/\ij /\/\/vvv%mj
4. else if existintersection{, B) then RN RN
5: if ieE then I NN I MVAN
6 Vi = 0dthmp I*eq. 8/
7 else \ \
8 v; = HierarchicalWavRasteii( B ) \ \
9 end if
10. else @) (®)
11: vi=0 i e U*/ Fig. 6. Two different cases for the iteration along a boundszfrthe field
12: end if of view that separateE set andU set. Fig. 6(a) artificial separatiof (with
13: end for waves) was totally empty and the observation of a part ofitsrior (on the

1.0bs .ob | ob right of the red boundary) does not bring any informatiomgé&ig. 6(b) the
14: {§S+ 008 4028 L. 7df’noss} =waveletTransformi{vp,--- ,vn}) separation brings information about the state of the yekoea that is inside

f1.57° ) . .
. . the field of view (on the right of the red boundary).
15: for eachd; g do

16 df g df g+ dp%° I*update inferencd

17: end for
18: returns the scaling coefficiest -°°°

An update is almost always required for cells that are in
the obstacle neighborhood (cells marked with 'D’ in fig. 5)
so iteration is always performed in area that contains such
a cell. But for boundaries that separate cells that beloags t

Algorithm 1 gives the pseudo-code of the first hierarchictl set and toE set (white and blue cells in fig. 5) iteration
grid traversal. The algorithm is recursive and begins witls required only if theE set corrects the knowledge in the
the whole grid as the first subspace defined by the root @fid (fig. 6(b)) otherwise the iterations can stop early ie th




. . algorithm | time (ms map size mem. | nb. points | nb. cells
hierarchy (fig. 6(a))- algg.J 1 (2D) 2s§ : Totr 200m | VB | 1076 16 | 510
alg. 2 (2D) 2.8 400mx200m | 5MB | 107.6 1P 810
alg. 2 (3D) 30 (50m)?x20m | 23MB | 24 10 50 1
Algorithm 2 HierarchicalWavRaster( subspaSemean occu-
pancy of subspacs: é;l, empty boundpemp, sensor beard TABLE |
) COMPUTING RESULTS OF THE2 ALGORITHMS IN 2D AND 3D.
{3, v} = inverse
2 WaveletTransformss™, df, o+, df o})
for each subspadeof S:i=0,...,ndo polygon or polyhedron of the sensor view with vertices and
4 if sizeoff) = minResolution then edges and implicit representation of a grid cell with itserd
vi = evalOccupancy) Then polygon-polygon or polyhedron-polyhedron intersect
6. else _ N is computed, if this test fails an inclusion test is perfodne
spaceState = existintersectidn@ ) test if one object is included in other.
8: if spaceState is UNKNOWNthen
vi=0 V. EXPERIMENTS
10: else if spaceState is OCCUPIEDRhen A. Computing time and required memory

v; = HierarchicalWavRasteli( B )

12: else if spaceState is EMPTY am? > Pemp then
v; = HierarchicalWavRasteli B )

14: else if spaceState is EMPTYthen

We performed experimerfton 2D real data with the first
and second algorithm with moving obstacles and on 3D
simulated data with the second algorithm and with only stati

obstacles.
Vi = odckmp freq. 8/ In the 2D experiment a big truck equipped with four SICK
16: en_d i LMS-291 at each corner carries a big hot metal container
eé‘\d i 9 . : behind it during a B hours experiment, the data are noisy and
18: en\(lii ;;Vi TV /*update inferenct the evolution property of the map is required by the presence

TSl | B 9 g of a lot of moving obstacles (in particular the hot metal
20: {0, dy s+, di, s} =waveletTransform{g, - -, va}) container). The algorithm processes the 4 laser rangerfinde
returns the scaling coefficiest -°*°= s — &L at real-time (461z each). Important number for evaluating
algorithm efficiency are described in tab. V-A. Despite the

inverse wavelet transform the second algorithm perforrntebe
%ﬂan the first one (10 times faster in 2D). The localization
as given by a dedicated algorithm. In the 3D simulation
rotating sick was simulated. The localization was given
Ih(l)nfy the simulation and a noise was simulated on the range
measurement. 3D occupancy grids are constructed using the
pproach described in this paper and fig. 7(a) and 7(b) shows
different views of the 3D occupancy iso-surface. In the
case the number of nodes in the wavelet tree is 178304

In algorithm 2 three main differences appears: first
inverse wavelet transform is performed to retrieve the
formation about the current state of the traversed subsp
(line 1—2). Second, line 7, the intersection function retur
OCCUPIEDonly if the subspace intersect a neighborhood
an obstacle and it returr@VIPTY if the subspace is included
in EUU. Third the value of the minimum possible occupanc
Pemp iS @ parameter of the algorithm in order to compare t%o

state of the traversed subspace with information gain UTDqu 5MB of data which compared to the 2414368 3D points

by the sensor observations (line 12). . 0 .

The major difference between the maps produced by the fi?sqthered IS Ies_s than 8%. The requ_lred memory (.)f the whole
: . . : ree structure is 2dB and the required memory is 20(B

and the second algorithm s that in the second algonthrreth%r the complete grid shows that the wavelet representation

is noa priori unknown area. Thus it is not possible anymore tgaves more Izhan 310/ of the required memor co?n ared with

store the position of the unexplored parts of the world. This classic OG re reseontat'on q y P

could be a problem if one wants to drive the robot toward ! P lon.

terra incognita Nevertheless in the observation processing ti& Qualitative results

information of unknown area is conserved such that ocafusio For 2D and 3D grids, comparisons with a standard grid

are handled at the observation level. _ _ construction algorithm show that there are no significant
One of the most important part of the previous algorithMggterences. In the 3D results fig. 7, part of the grounds fen t
are the intersection queries: the definitioneafstintersection right of the map) is not entirely mapped because the density
This functions must be really optimized in order to retrieVgs measurements is not uniform but depends on the vehicle
fast algorithms. Each kind of telemetric sensor requires i\'}elocity. As the map is considered emptyriori unseen parts
own implementation oéxistintersectionA simple implemen- ¢ he ground appear as holes. Thus it would be interesting to
tation of such a function is easy to write since it inVOIVeEseaground model or ground inpainting procedure to ifital

only geometric intersection primitives, therefore we witht map. Then, ground measurements would only correct the
describe extensively one here for a lack of space. In our own

implementation we have used an explicit representation ofEvery experiment was done with an Intel(R) Pentium(R) 4 CFO0GHz
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Fig. 7. The wavelet OG obtained from a simulation of 3D datéheidng with a rotating laser range-finder. Fig. 7(a) and #flm views of the reconstruction
of the grid from the wavelet grid at scalel (cell side of 020m) and scale—2 (cell side of 040m). It is noticeable that salient details as the lamp-post or
the 4 pole landmarks before the wall are accurately mapplkee.viiall is interestingly smooth too, and that is a featureaioled by the oracle of the scaling

view, details appear at finer views.



