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Abstract— Building occupancy grids (OGs) in order to model
the surrounding environment of a vehicle implies to fusion
occupancy information provided by the different embedded
sensors in the same grid. The principal difficulty comes from the
fact that each can have a different resolution, but also that the
resolution of some sensors varies with the location in the field of
view. In this article we present a new exact approach to this issue
and we explain why the problem of switching coordinate systems
is an instance of the texture mapping problem in computer
graphics. Therefore we introduce a calculus architecture to build
occupancy grids with a graphical processor unit (GPU). Thus
we present computational time results that can allow to compute
occupancy grids for 50 sensors at frame rate even for a very fine
grid. To validate our method, the results with GPU are compared
to results obtained through the exact approach.

I. INTRODUCTION

At the end of the 1980s, Elfes and Moravec introduced
a new framework to multi-sensor fusion called occupancy
grids (OGs). An OG is a stochastic tessellated representation
of spatial information that maintains probabilistic estimates
of the occupancy state of each cell in a lattice [1]. In
this framework, each cell is considered separately for each
sensor measurement, and the only difference between cells
is the position in the grid. For most common robotic tasks,
the simplicity of the grid-based representation is essential,
allowing robust scan matching [2], accurate localization
and mapping [3], efficient path planning algorithms [4] and
occlusion handling for multiple target-tracking algorithms [5].
The main advantage of this approach is the ability to integrate
several sensors in the same framework, taking the inherent
uncertainty of each sensor reading into account, contrary
to the Geometric Paradigm [1], a method that categorizes
the world features into a set of geometric primitives. The
major drawback of the geometric approach is the number
of different data structures for each geometric primitive
that the mapping system must handle: segments, polygons,
ellipses, etc. Taking into account the uncertainty of the sensor
measurements for each sequence of different primitives is
very complex, whereas the cell-based framework is generic
and therefore can fit every kind of shape and be used to
interpret any kind and any number of sensors. The opportunity
of such a diversity is essential because it is highly useful to
notice that the failure conditions are almost always different
when switching from a sensor class to another. In fact, video
cameras are very sensitive to changes in light conditions,

laser range-finders are corrupted as soon as there is direct sun
light in the receiver axis and ultra-sonic sensors are useless
when the reflexion surface is very irregular. Moreover, the
combination of redundant sensors limits the effects of sensor
breakdown and enlarges the robot field of view.

For sensor integration OGs require a sensor model which is
the description of the probabilistic relation that links a sensor
measurement to a cell state, occupied (occ) or empty (emp).
The objective is to build a unique occupancy map of the
surroundings of an intelligent vehicle (the V-grid), equipped
with several sensors that summarize all sensor information in
terms of occupancy in their sensor model. As explained in
section I, it requires to get a likelihood for each state of each
cell of the V-grid per sensor.® But each sensor have its own
coordinate system for recording measurements, that is with
a particular topology: Cartesian, polar, spherical, etc, and a
particular position and orientation in the V-grid. For example,
every telemetric sensor that uses the time-of-flight of a wave,
like laser range-finders, records detection events in a polar
coordinate system due to the intrinsic polar geometry of wave
propagation. Thus building a unique Cartesian occupancy
grid involves to change from the sensor map (the Z-grid)
to a local Cartesian map (the L-grid) and/then to transform
the L-grid into the V-grid with the good orientation and at
good position. In the following paper, a general statement of
the problem is presented with an exact approach that solves
this problem. In particular we obtain maps without holes,
compared to the strong Moiré effect in maps obtained with the
state-of-the-art line drawing method for laser range-finders [3]
(Fig. 1(a)). However, the OG mapping process has obviously
a computational cost that increases with the number of sensors
and the number of cells; these parameters affect the precision
of the representation. One of the major advantages of the OG
framework is that all fusion equations are totally independent
for each cell of the grid, which makes it possible to improve
computing by allowing parallel algorithms. Thus in this paper
we present two contributions:

« ageneral and exact algorithm for the switching of discrete
coordinate systems, which we derived for the laser-
range finder case and used as a criterion to evaluate the
performances of other methods in terms of correctness,

L1t is only necessary for the sensors that view the cell.
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Fig. 1.

(b)

(a) 2D OG obtained by drawing lines with 1D occupancy mapping (for a SICK laser-range finder). The consequences are a Moiré effect (artificial

discontinuities between rays far from origin). (b) 2D OG obtained from the exact algorithm. All the OGs are 60m x 30m with a cell side of 5¢cm, i.e. 720000

cells.

precision and computing advantages.

o a very efficient GPU implementation of multi-sensor
fusion for occupancy grids including the switch of co-
ordinate systems validated by the results of the previous
method.

In the conclusions of the first study we demonstrate the
equivalence between the occupancy grid sensor fusion and the
texture mapping problem in computer graphics [6]. And in
the second contribution, we present an efficient algorithm for
graphical processor units (GPUs). Using the parallel texture
mapping capabilities of GPU, we obtain a fast procedure of
fusion and coordinate system switch. Thus, the experiments
show that GPU allows to produce occupancy grid fusion for
50 sensors simultaneously at sensor measurement rate.

The paper is organized as follows: we present first math-
ematical equations of sensor fusion and the 1D equations of
telemetric sensor model we use. Then we focus on the switch
of coordinate systems from polar to Cartesian because for
most telemetric sensors the intrinsic geometry is polar. Then
we explain how to simplify the above switch of coordinate
systems to improve the computational time with parallelism,
taking into account precision and/or safety. Finally in the last
sections we present our GPU-based implementation and the
results of fusion obtained for 4 sick laser range-finders with
centimetric precision.

II. FUSION IN OCCUPANCY GRIDS
A. Bayesian fusion for a grid cell and several sensors.

a) Probabilistic variable definitions:

. 7 = (Z,...,Z,) a vector of s random variables?, one
variable for each sensor. We consider that each sensor ¢
can return measurements from a set Z;.

e Opy € O = {occ,emp}. O, , is the state of the bin
(z,y), where (z,y) € Z>.

Z? is the set of indexes of all the cells in the monitored
area.

2For a certain variable V we will note in capital case the variable, in
normal case v one of its realization, and we will note p(v) for P([V = v])
the probability of a realization of the variable.

b) Joint probabilistic distribution: the lattice of cells is
a type of Markov field and many assumptions can be made
about the dependencies between cells and especially adjacent
cells in the lattice [7]. In this article sensor models are used
for independent cells i.e. without any dependencies, which
is a strong hypothesis but very efficient in practice since all
calculus could be made for each cell separately. It leads to the
following expression of a joint distribution for each cell.

_ s
P(Ouy, Z) = P(Ouy) [ [ P(Zi|Ouy) @
=1
Given a vector of sensor measurements 2z = (z1,..., zs)

we apply the Bayes rule to derive the probability for cell (z, y)
to be occupied:

p(0x7y|7) =
p(ox,y) Hf:1 p(zi|0x,y) @)
p(oce) [T;—; p(ziloce) + p(emp) [T;_, p(z:lemp)
For each sensor i, the two conditional distributions
P(Z;|occ) and P(Z;|lemp) must be specified. This is called
the sensor model definition.

B. Telemetric sensor model of a time-of-flight range-finder

For the 1D-case, the sensor models, used here (eq. (7),(8)),
are based upon the Elfes and Moravec Bayesian telemetric
sensor models [1]. Now, is presented our own demonstration of
the results of [1], which add a complete formalism to express
the dependance of the sensor model to the initial occupancy
of the grid cells. This initial hypothesis is called the prior.

The whole presentation is based upon the assumption that
the telemetric sensor is of a time-of-flight type. This is an
active kind of sensor which basically emits a signal with a
fixed velocity v at time %), then receives the echo of this signal
at time ¢1, and then computes the distance of the obstacles
from the source with: d = “=o. We call 2 the source location
of the emitted signal.

First, we consider an ideal case: when there are several
obstacles in the visibility area, only the first one (in terms
of time of flight) is detected.



1) Probabilistic variable definitions: Only one sensor is
considered.

e Z € {“noimpact”}|JZ. Z belongs to the set of all
possible values for the sensor with the additionnal value:
“no impact” which means that the entire scaned region
is free.

e O, € O = {occ,emp}. o, is the state of the bin z either
“occupied” or “empty”, where x € [|1; N|]. N is the
number of cells in the 1D visibility area for a single
sensor shot.

e G, € G, = {occ,emp}lENIN=} g represents a
state of all the cells in the visibility area except the
x one. G, takes its values in the t-uples of cells
(1 =01, ..,Com1 = 03-1,C341 = Ogt1,---,CN = ON)
where ¢; is the cell i (fig. 2).

2) Joint distributions: The probabilistic distribution de-
scribing the interaction between sensor values and a cell state
is, following an exact Bayes decomposition:

P(Z,04,Gy) = P(Oy)P(G4|04)P(Z|Gy, Oy)

o P(O,) is the prior: this is the probability that in a cell
lies a surface that is reflective for the telemetric sensor
used. In this case the cell is called occupied. We note
the probability that a cell contains no reflective surface
(empty): u.

e P(G;|0;) is the probability that, knowing the state of a
cell, the whole visibility area is in a particular state. Here,
we make a strong assumption: we assume that the state
of the cell = is non informative for the states of the other
cells. So formally: P(G,|O,) = P(G,). However not
any hypothesis about the probability of some particular
state of G, is made. Then: the sole hypothesis is that
P(G,) only depends on the number of empty or occupied
cells®.

e P(Z|0O4,G,) depends of the sensor, but forall (04, g») €
[I1; N|] x G., the distribution over Z depends only of the
first occupied cell. Then we suppose that knowing the
position of the first occupied cell ¢, in the sensor view
9z, P(Z|oz, g..) behaves as if there were only ¢ occupied
in all the area. We call this particular distribution over Z:
the elementary sensor model Py (Z).

To compute P(Z,0,) we derive, now, equations for the
marginalisation over all the possible states of G,.

3) Marginalisation sum in the discrete 1-D case : The
heart of the problem is to deal with the visibility of a bin.
Considering a perfect case, the first occupied cell in the
visibility area causes a detection. So knowing that the cell x is
occupied, that cell is the last one which can cause a detection.
Therefore we give the next definition.

a) Definition : we define 4 as the set of all t-uples of
G, type: (c1,.. .,cn) € {occ,emp} V-1 (Fig.
2) where:

<3 Cx—1,Cp41,5 - -

Swhich is a more general modelling than the uniform choice made in [1].

D) NEEE BN NN B

First occupied cell

Fig. 2. In white (resp. black) the empty (resp. occupied) cells. An element
of A3, here k < z.

e ci=empVi<k

e ¢, = 0CC

To derive the equations of the sensor models we use the
following properties:

b) Properties:

1) V(i) i #j, ALNAL =0

2) UAZ=G:\{ (co)peinviiay | ¥picp = emp }

3) if k& < x there are k determined cells: the £ — 1 first
cells: (¢1, ..., cx—1), which are empty, and the kth: (cg),
which is occupied.

Then p(A%) = uF=1(1 — u).

4) if k > x there are k — 1 determined cells: the & — 2 first
cells: (¢1,...,¢x—1,Cat1,--.,ck—1) Which are empty
and the (k — 1)th.: (¢x) which is occupied.

Then p(A%) = uF=2(1 — u).

c) Distributions P(Z|...) : the probability distribution
over Z expresses the following semantic. Knowing that the
cell = is occupied, the sensor measurement can only be due
to the occupancy of x or of a cell before = in terms of
visibility (Eg.4). So the probability that the measurement
is 0, comes from the probability that the first cell is
occupied, which is 1 — « and produces a measurement in 0:
Pi([Z = 0]), and from the probability that the first cell is
empty (u) and the second one is occupied and produces a
measurement in 0: P»([Z = 0]) and so on ... Then we split
the marginalisation sum into two complementary subsets of
G.: the set of A% such as z is not the first occupied cell and
its complement (Eq.3). Then it leads to the following formula:

occupied case:
o if Z 2 *no impact” :
p(Z|[0 = occ])
= Y p([Gx = g))p(Z][0x = occ), (G = g2])

92 €0
=S (AN B2+ (- S (A EUZ) ()
k=1 k=1

x—1
=> w1 = w)Pu(Z) + v Pa(2) (4)
k=1
As mentionned above eqg. 4 has two terms: the left termin
the sum that comes from the possibility that a cell before
x is occupied and the right term that comes from the
agregation of all the remaining probabilities around the
last possible cell that can produce a detection event: z. In
the case of a dirac elementary sensor model, the precision



is perfect and the agregation is completed at « fig. 3(a).
The “no impact” case ensures that the distribution is
normalized.

if Z ="no impact”:

p([Z = "no impact”]|[O, = occ])

=1- Zr;é”no impact” p([Z = r]|[0. = occ])

empty case:
if Z # “no impact” :
we note open = { (cp)pern, N (=) | YDy cp =emp }

p(Z][0: = mp]) ()
= Z )P(Z][O = emp), [G = gz])
N o

= Z p(Aﬁ)Pk(Z) + p(0pen)d z=mo impact"
k=1,k#x
z—1

=3 w1 - wh(2)
k=1

+ Z uk72(1 - u)f)x(Z) +u" 0 z—mo impact’(6)
k=x+1

There is three terms in the empty case: before the impact,
after and the term “no impact”. What is very interesting
is that in both occupied and empty model the term
before impact (left term) is exactly the same fig. 3(a)
and fig. 3(b). As above, the “no impact” case ensures
that every case is considered.

e if Z ="no impact”:
p([Z ="no |mpact”]

[0, = emp])
=1-0p([Z =7

[0 =emp])) +

4) Some elementary sensor models :
o Dirac model: when the sensor has a standard deviation

that is far smaller than the cell size in the occupancy grid,
it is suitable to model P(Z) with a dirac distribution®
(Fig. 3(a)-3(b)):

ﬁk([Z:z]): 10ifz=k%

0.0 otherwise.

Gaussian models: as all telemetric sensors are far from
perfect, the Dirac model is obviously inappropriate in
many cases. At this point the traditional choice [?], [?],
[?] favors gaussian distributions, centered on k& and with
a variance that increases with k.

It models the failures of the sensor well. However in the
case of a telemetric sensor the possible values for the
measurements are always positive, but Gaussian assign
non zero probabilities to negative values. Worst, close to
the origin i.e. z = 0, this distribution assigns high values
to the negative measurements. Therefore we propose the

N-—-1
u 0Z="n0 impact”

following discrete distribution (Fig. ??) based on the
gaussian® A (u, o):

P([Z=2)=

if ze[0;1] :

Jy- ey N (k = 0.5, 0 (k — 0.5)) (u)du

if z€]l;n]:

fLLZJ“ (k — 0.5,0(k — 0.5))(u)du

if z="no impact” :

Jinsoot N (k = 0.5, 0(k = 0.5)) (u)du.

Where o(x) is an increasing function of x. We notice
that the probability of “no impact” is increased by the
integral of the gaussian over |n; +o0c], which means that
all the impact surfaces beyond the sensor field of view
are not detected.
An other gaussian-based modelling was suggested in [8],
to take into account all short reflections that could drive
the echo to the signal receiver before the sensor has fin-
ished transmitting. These kind of telemetric sensor listen
and emmit by the same channel, so the sensor cannot
stand in both states: receiver and emmiter, at same time.
Pi([Z =2]) =

if z="no impact” :

f]ioo;l]u]n%oo[./\/'(k —0.5,0(k —0.5))(u)du

else:

z 1
JEFE N (= 05,00k — 0.5)) (u)du.

Thus, we notice that the probability of “no impact” is
increased by the integral of the gaussian over | — oo, 1].
In this two modelling, introducing the special case of
“no impact” is necessary to take the missed detections
into account.

lognormal model:
To take into account the particular topology of a tele-
metric sensor model, we propose to define P(Z) with a
lognormal based distribution:
Pu([Z = 2]) =
if z ="no impact” :
f]n;—s-oo[ L(log(k — 0.5), 0’
else:
fLZHl L(log(k —0.5),0

(k —0.5))(u)du

"(k = 0.5))(u)du

where: £(M,S)(z) = 1/(Sv2mra)e(n@)=M)?/(25%)
It could be surprising to choose this type of modelling
because the mean of P, ([Z = z]) is not in the middle of
the k cell as with the other modelling. But, the median
and the highest probability are in the middle of the &
cell, and that is what we expect really for a telemetric
sensor, i.e. there is as likelihood that the sensor return a
measurement before the kth cell than after.

SHere we assume that k is the index of the cell which represents all the
“4Here we suppose that z is an integer which represents the cell index, which  points with radial coordinate in ]k — 1; k], i.e. we assume a length of 1 for
the sensor measurement corresponds to: if z is real it is [z] + 1. cell, for simplicity.



5) Consequences: in the dirac elementary sensor models
case, the equations for the cell number p are:

w1l —-w)ifz<p

p(2|[0p =0cc]) = { wlifz=p @)
0 otherwise.
w1l -w)ifz<p
p(z[[0, = emp]) = 0ifz=p 8

u*~2(1 — u) otherwise.

when z # “no impact”. Thus the equations of [1] holds if the
uniform prior hypothesis « = 1 —u = 1/2 is used. It is very
interessant to notice, that in the Dirac case, only three values
are used to define the values of a sensor model all along the
sensor field of view. For the other elementary sensor models
proposed, only more values are needed close to the cell where
a detection event occurs.
When P(O,) is uniform, the inference calculus gives:

p(=locc)
p(=]0cc) + plzJemp)

plocclz) =

Thus in the case of all the above elementary sensor models,
the following qualitative properties apply:

o if z < randVk e [|1,2]], Pu(]Z = r]) ~ 0 which is
the case for gaussian elementary sensor model, according
to eq. 4, fig. 3(a) p(z|occ) ~ 0 while according to eq. 6,
fig. 3(b) p(z|emp) > 0.
S0 p(1Z = r|[0. = empl) > p(1Z = +][[0, = occ])
therefore:

p(occlr) ~0

It means that, if there is a measurement in r, there is no
occupied cell before 7.

o if z > r then, almost only the left term in eq. 4 and eq. 6
are used to calculate the posterior and they are identical.
Thus p(occ|r) ~ 0.5
That what ensures that after the impact all the cells have
the same probability, which means: no state occupied of
empty is preffered. That is the required behaviour because
those cells are hidden. The equality holds in the dirac
case but for other elementary sensor models it depends
on the uncertainty in the location of the cell that produces
the impact. For example, for gaussian elementary sensor
models the equality numerically holds far enough -4o (k—
0.5) is enough- behind the impact location.

6) Error model: For modelling false alarm and missed
detections it is possible to use a confidence model (or error
model) like in [8]. A different confidence model can be
used for each sensor so that it is possible to deal with the
information about the amount of errors produced by each
sensor. The principle is to consider a new variable:

e D; € D= {on,off}. D, is the state of the measurement,
either correct ("on”) or wrong (”off”).

Now, the joint distribution to define is:

P(0,,Z. D) = P(0,) [] P(D:)P(Zi|0s, D:)
i=1
that is defining P(D,) and defining P(Z|O,,off) and
P(Z;|0O,,on). Defining P(D,) corresponds to define P([D} =
off]) which is simply the probability that the ith sensor
produced a wrong measurement. The previously defined
P(Z;|0,,) is assign to P(Z;|O,,on) because it models the
correct behaviour of the sensor. For P(Z;|O,,off), without
any kind of information, a non-informative distribution which
assign the same probability to each sensor measurement, is
chosen for the two possible states, o,., of the cell.
If there is no information about the current behaviour of the
sensor, the used distribution is just the marginalization over
all the possible state of each measurement:

©)

P(0,, Z) = P(0,) H S P(D:)P(Z,|0., D)

i=1 D

(10)

Finally it is equivalent, to remplace each sensor model
P(Z;|0,) by the distribution:

p(0n)P(Z|O) + p(off)i (Z;) (11)

where U(Z;) is a uniform distribution over Z;.

This kind of transformation of the sensor model adds a certain
inertia related to the probability of wrong measurement. It
means that a good sensor measurement must be received
several times to be considered by the system as relevant as
a sensor measurement without error model. This inertia is the
price for the robustness added by the fault modelling.

An other very important feature added by the error model is
that it implies that all the probabilities are non zero. Thus in
eq. (2), p(og,y) is never zero neither for occ, nor for emp.
If not, the cell occupancy would remain always the same
whatever a sensor measurement is received. The consequence
would be an occupancy building very sensitive to sensor
failure. And it is also possible to use logarithm representation
for probabilities which increases the numerical stability and is
required for the implementation of the fusion process.

C. From 1D to 2D

The sensor model is defined in a ray (1D), and each cell in
this ray is defined by its radial coordinate p, the telemetric
sensor is supposed to return the cell number z where a
detection event occurs.

The objective of the following section is to compute
P(Z|[O,,]) from P(Z|[O,]) for a ray with efficient and
precise algorithms.

I11. CHANGE FROM POLAR TO CARTESIAN COORDINATE
SYSTEM

To compare the measurements of two sensors at different
positions on a vehicle, each of them providing measurements
in its own coordinate system, the sensor information must be
switched to a common frame. In the OG case, all the sensor
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Fig. 3. probability distributions over the possible sensor range measurements
knowing that the 14th cell is occupied (a),(c) (resp. empty (b),(d) ), a priori
over the occupancy of cells, the prior (u) is set to 0.1. (a),(b) dirac elementary
sensor models; (c),(d) gaussian elementary sensor models.

model distributions must be switched from the Z-grid to the
V-grid. In the first subsection, we give a general formalization
of this problem which leads us to present an implementation
of the exact solution. Finally we compare our exact algorithm
with the classical approach in robotic and an adaptive sampling
approach that leads us to present the equivalence of OG
building with a texture mapping problem in computer graphics.

A. Problem statement

We use the word mesh for a planar subdivision of space
whose geometric components are vertices, vertices that make
edges and edges that make faces that are equivalent to cells
in the OG formalism. We define a discrete coordinate system
switch as the transformation that allows to define the same
function for different meshes of the same space S. Given a
mesh A, origin, a mesh B goal where B C A (i.e. each point
in the surface covered by B belongs to A too) and 2 functions:

1) f: F(A) — E where F(A) is the set of faces in .A and

E a vector space,
2) h: S — S which makes a bijective transformation from
a point of the goal to a point of the origin.
Thus it is possible to associate a point = of a certain face c in
B to a point u of a certain face ¢’ of A.

the problem is to find a function g: F(B) — E such as for

each face r € F(B)

ft)at® = g(r).

ter

SHere, we consider, for the integral, the Lebesgue measure for simplicity,
but the formalism is general as soon as the measure of the intersection between
any face of A and any face of B is well defined.

If there exists an analytical expression of f, and if h is
differentiable and analytical expression of its derivatives exist,
a gradient analysis gives exact analytic equations for the
change of coordinate system through the following equation:

o) = [ gis= [ jonpnole. @2

ter ter

where Dh(t) is the Jacobian matrix of A in ¢ and |Dh(t)]
its determinant. But in most cases in Bayesian modeling,
functions are discretized due to learning processes or as the

result of Bayesian inference. In our special case, we do not
possess the analytical form of the sensor model (eg. (7),(8)).

e

——o-¢
—¢-¢
— ¢

(b)

Fig. 4.  (a) two subdivisions with dash lines and plain lines. In different
color patterns: the different cells in the mesh A that intersect the ABCD cell
of mesh Bi.e Iapcp. (b) overlaying the two subdivisions: adding vertex at
each intersection of .4 and B. The colored cells are the parts of the colored
faces above that are included in ABCD.

1) The map overlay approach: the exact manner to compute
g(r) is to search all the faces of A that intersect » (Fig 4a):



let I, ={u e F(A)unr#0}.

For each face i of I, let compute the surface, s, of i N and
the surface, s, of r and keep their quotient = (noted s; ;.).
Then we obtain g(r) with the following exact formula:

g(r) =Y sirfi). (13)

i€l

So the problem comes down to computing, for each face
r, its set I,.. This problem is called the map overlay problem
in the computational geometry literature [9]. The complexity
of the optimal algorithm [10] that solves this problem is
O(nlog(n) + k) in time and O(n) in space where n is
the sum of the numbers of segments in both subdivision A
and B while & is the number of intersection points in both
subdivisions. In the case of simply connected subdivisions the
optimal complexity is O(n + k) in time and space [11], and
for convex subdivisions the optimal complexity is O(n + k)
in time and O(n) in space [12]. This computation is very
expensive, even in a simply connected subdivision and to use
this approach a pre-computed map overlay is calculated off
line.

2) Exact algorithm: To pre-compute the switching of coor-
dinate systems an adaptation of the algorithm of Guibas and
Seidel is used in order to obtain for each map of 13, the set
of indexes of faces of A4 that intersect it and the surface of
each of these intersections. We choose to work with convex
subdivisions only, because it is easier to compute the surface
of the intersections which therefore are also convex. Then
for the switch from polar to Cartesian coordinate system, the
algorithm is the following:

Algorithm 1 CoordinateSystemSwitch(polar .4, Cartesian )
1: mapping < array(#(F(B)))

compute C'(A): a convex approximation of A4

compute the map overlay of C'(A) and B

for each face f of the overlay do
find i € F(C(A)) and r € F(B) suchas f Cinr.
compute s = %‘ig;
append (r, s) to mapping[i].

end for

With this algorithm we have computed the map for the
switch from polar to Cartesian coordinate system. It is pos-
sible to compute the two transformations, the one relative to
topology and the one relative to position at the same time ,just
by setting the relative positions of the two meshes.

B. Comparing the methods

In the next paragraphs, two methods are reviewed and are
compared with the exact algorithm. We give quantitative and
qualitative comparisons: the output probabilities values are
compared and the maximal and average differences are shown,
the average calculus time on a CPU is given then we focus
on correctness and the possibility to have parallel algorithms.

Our contribution in these comparisons is that, to the best of
our knowledge, the exact algorithm was never used before.

1) The classical solution and the Moiré effect: as far as we

know, all the OGs shown in the literature resort to line drawing
to build the sensor update of laser range-finders [5], [3]. This
method is simple to implement with a Bresenham algorithm
and is fast because the whole space is not covered. But it
presents several drawbacks. An important part of the map (all
the cells that fall between two ray) fails to be updated. This
is a well known problem, called the Moiré effect (fig. 1(a))
in computer graphics literature. This effect increases with the
distance to the origin, and if the aim of the mapping is to
retrieve the shape of objects and scan matching algorithms
are used, the holes decrease the matching consistency. The
maximal error (tab. 1) is important because space is not well
sampled and cells close to the origin are updated several
times because several rays cross them. This ray overlapping
induces bad fusion that makes some small obstacles appear or
disappear.
This is an important issue: the V-grid has a certain resolution,
i.e. a cell size and each sensor has its own resolution, thus
a good OG building system must handle these differences.
Interestingly, the OG building system allows the system to
scale the grid locally to match the sensor resolution if pre-
cise investigations are needed, which means that all the the
available information can be used.

2) Sampling approaches: The sampling approach is a com-
mon tool in computer graphics: in each cell of the Cartesian
mesh a set of points is chosen, then the polar coordinates
of those points are calculated, then the original values of the
function f in those coordinates. Finally a weighted mean is
calculated for the different values of f and is assigned to the
Cartesian cell. Here the polar topology requires a non-regular
sampling, i.e. the number of samples ns for each Cartesian
cell is adapted according to the surface ratio of Cartesian and
polar surfaces:

Fig. 5. Notations for the polar and Cartesian grids.

dx? _ dx?
(p+%)2 = (p— F)2)do  pdpd?

where p is a range associated to the point (z,y) and
dp, df, dx are the steps of the two grids (Fig. 5).

This approach, called adaptive sampling, solves the problem
of the singularity near the origin but still makes an approxi-
mation in choosing the location of the sample points and the

ns(z,y) = (14)
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Fig. 6. In red, below: the analytical curve of the number of sample in
adaptive sampling given by the ratio between Cartesian and polar surface. In
green, above: cardinal of the I, sets in the overlay subdivision provided by the
exact algorithm. One can notice that the adaptive sample is an approximation
because the curve is below the exact one. The sampling scheme is hyperbolic
in the exact and approximate case.

according weight. The average and maximal errors (tab. 1)
are small compared to the line drawing algorithm; calculus
time is, however, more expensive. The adaptive sampling is
very close to the exact solution, in terms of the average
number of samples per Cartesian cell, and of the repartition
of the samples according to the distance with the singularity
(fig. 6) and it is also closer int terms the quantitative error.
Moreover the sampling method offers two advantages. From
a computational point of view, it does not require to store
the change of coordinate map, i.e. for each Cartesian cell the
indexes of the polar cells and the corresponding weights that
the exact algorithm requires. This gain is important not due to
memory limitation but because memory access is what takes
longest in the computation process of the above algorithms.
From a Bayesian point of view, the uncertainties that remain
in the evaluation of the exact position of the sensor in the V-
grid have a greater magnitude order than the error introduced
by the sampling approximation (this is even more so with an
absolute grid”). The exactness in the switch of Z-grid to L-grid
is relevant only if the switch between the L-grid and the V-
grid is precise too. Thus in this context, a sampling approach
is better because it is faster and the loss of precision is not
significant, considering the level of uncertainty.
In these three methods, the exact algorithm and the sampling
approach are parallel because each Cartesian cell is processed
independently, whereas the line algorithm is not because the
Cartesian cells are explored along each ray. The results in the
tab. I are computed for a fine grid resolution: cell side of 0.5cm
and a wide field of view: 60m x 30m, i.e. 720000 cells and
one sick sensor that provides 361 measurements. The absolute
difference between the log-ratios of occupancies are calculated
to evaluate both average and maximal errors. The CPU used
is an Athlon XP 1900+.

3) Equivalence with texture mapping: in computer
graphics, texture mapping adds surface features to objects,

7in a slam perspective, for example

such as a pattern of bricks (the texture) on a plan to render
a wall. Thus the texture is stretched, compressed, translated,
rotated, etc to fit the surface of the object. The problem
is defined as a transformation problem between the texture
image coordinates and the object coordinates [6]. The main
hypothesis is that there exists a geometric transformation H
that associates each object surface coordinate to each texture
coordinate:

H: R = R?
(Zay) = (U,V) = (U(x,y),V(x,y))
Let go(z,y) the intensity of the final image at (z,y) and
T,(u,v) the intensity of the texture at location (u,v) in
continuous representation, the final intensity is linked to the
texture intensity by:

(15)

ga(xvy) = Ta(U,V):Ta(U(ZE,y),V(Sﬂ,y)). (16)

The problem statement is how to define on the regular
grid of the image representation in computer memory this
continuous function. This is precisely a sampling problem
and the geometric function H is a particular case of the h
function above.

Just considering the problem in OG: for the occ state of the
cells (for example) and for a certain measurement z in a
ray, the sensor model of each polar cell can be considered
as a texture: p(z|[Owv=(p,0) = OCc]) that only depends of
the (p, #) coordinates. Thus the problem is to map this polar
texture on its corresponding Cartesian space: a cone. The
transformation function is the mapping between the Z-grid
and the V-grid.

Method Avg. Error | Max. Error avg. time
exact 0 0 1.23s (CPU)
line drawing 0.98 25.84 0.22s (CPU)
sampling 0.11 1.2 1.02s (CPU)
0.049s on MS
GPU 0-15 18 0.0019s on board
TABLE |

COMPARISON OF CHANGE OF COORDINATE SYSTEM METHODS.

The equivalence between texture mapping and occupancy
grid building, is part of a strong link between images and OG
[1], and it suggests to investigate methods and hardware used
in computer graphics to process this key step of OG building,
as done in the following.

1V. CHANGE OF COORDINATE SYSTEM ON GPU

The GPU components for texture mapping rely on basic
approximation procedures and for each of them it often exists
dedicated process units that achieve the associated calculus.
The basics of the process are

« the way to choose the cells in A that are used in the

calculus for a cell » € B. That is the sampling step.



« the way to choose the weight associated with the different
chosen cells in A. That is the interpolation step.

When defining the mapping for a cell of the goal mesh,
BB, two great cases arise depending of the number of original
cells needed to deduce the value for a goal cell. An intuitive
evaluation for this number could be made with the ratio
between the surface of the cell in the goal mesh and mean
surface of the associated cells in the original mesh, A. Cells
in the goal mesh can have a surface:

1) far lower (Fig 7(a));

2) comparable (Fig 7(b));

3) far greater (Fig 7(c))
than the corresponding cells in the original mesh.

The two first cases are handled identically with a magni-
fication texture mapping and required only the fundamental
part of sampling and interpolation processes that is described
in subsection IV-A. The third case, called minification, cor-
responds to what happens close to the polar origin in the
change of coordinate system from polar to Cartesian. The
main idea to process this case is to find a transformation of
the original mesh to get back a magnification case. And the
dedicated transformation to achieve that process is described
in the subsection 1V-B.

A. Sampling and interpolation schemes for magnification

In graphical boards, all the information stored are mapped
on matrices of bytes. Therefore all the definitions of the choice
of sampling points and the choice of interpolation weights
are given for transformations between matrices. Thus origin
and goal cell values are accessed via integer coordinates in
rectangular matrices. And all the geometrical transformations
are inside the definition of F' (Eg. 15) which transform
continuous matrice coordinates into other continuous matrice
coordinates.

1) One dimensional interpolation: let us consider two 1D-

regular meshes (fig 8). The two meshes just differ by a
translation and the problem is to evaluate the function defined
on A on the center of the cells of 5. Let z the real coordinates
of the center of a cell in B and u = F(z) the real coordinates
of = in the memory representation of A.
This is a very simple case of magnification because each of the
cells have identical shape, in this case a cell of B could overlap
at most two cells of .A. The coordinates of the overlapped cells
are:

o ig= LU — 1/2J

] Z'l = ’L'Q + 1

In this simple case a linear interpolation realizes an exact
change of coordinate system, the weights are defined by:

1— frac(u—1/2)

1710()

wy =

wp =

and the value in B is:

g(x) = woTy(io) + w1Ta(i1) (17)

n

NN+ | *
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+ o+ +
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Fig. 8. The center of the cell of B is the sample, u is its coordinate in the A
memory frame. The fractional part of u—1/2, w = 0.4 is exactly the distance
from u to the center of the cell 0 of A and 1 —w = 0.6 is the distance from
u to the center of the following cell 1 of .A. A linear interpolation keeps the
greatest weight from the closest cell of the sample: thus 0.6 from co and it
remains 0.4 from c;.

2) Two dimensional interpolation: the process in 2D is
a combination of the 1D-process on the rows and on the
columns. Thus it provides four samples and four weights
and it is again exact for Cartesian regular meshes that differ
only by a translation. In the other cases, it gives a good
approximation because in a magnification case a cell of caliB
overlap almost between one and four cells of A and the
interpolation process guarantees that the closest cell of the
sample is the main contributor to the value for the goal cell.
Let (z,y) the real coordinates of the center of a cell in B and
(u,v) = F(z,y) the real coordinates of (z,y) in the memory
representation of A. Since the goal cell has smaller or equal
size compare to the original cells, the approximated number
of original cells overlapped by the goal cell is fixed to 4. Thus
sampling is defined with four points whose coordinates are:
{(d0, jo); (G0, j1); i1, Jo); (i1, j1)} where

e i9g=|U—1/2] and jo = |[v—1/2]

e 11 =19+ 1 andj1 =jo+1

The weights in the interpolation follow a linear model: the
closer to the sample (u,v), the larger they are. They are based
upon the two numbers:

1— frac(u—1/2)
1— frac(v—1/2)

Wen =
wp =

where frac(z) denotes the fractional part of z. The final
interpolated value for the 2D function is then:

g(z,y) =
wawsTy(io, jo) + (1 — wa)wsTa (i1, jo) (18)
+  wa(l —wg)Tulio, j1) + (1 — wa)(1 — wp)Tulir, j1)
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Fig. 7.

B. Minification and mipmapping

(b)

©

(a) and (b) cases of magnification: the goal cell overlap with few cells in the original mesh. (c) case of minification: the goal cell overlap many
cells in the original mesh.

The Jacobian is the area of the image of the surface defined

The definition of magnification given above was approxi- DY an elementary displacement (dz, dy) in the goal space by

mate, thus let us give a precise one now.
1) Minification definition: let us define v:

au?

ou ou’
ox

@2

V = max

This value is related with the Jacobian (Eg. 19) in the

continuous change of coordinate equation (Eq.12) for the 2D
case:

du  du
|DH(z,y)| = | % % (19)
ox oy

It gives the maximum of the norms of each of the column of
the Jacobian (Fig. 9).

H (Fig. 9). So v is the maximum distance covered in the
original space for an elementary displacement in the direction
x or in the direction y in the goal space. Thus v? is an
upper bound for the area covered in the original space by an
elementary displacement (dz, dy).

To define if there is minification: a comparison is made
between the areas in the origin and in the goal through
v. If v is lower than /2 there is magnification otherwise
minification. The natural choice would be to compare v to 1.0

but it is not optimal since four samples are used to evaluate
the function in the magnification process.

0,dy)
w5y ouTav (oY) (ax,0
OH;;‘ aﬁf) 0.dy) (55 ba) 0
x
(1, v). ¢ ¥v§¥> Y (ax,0)
Fig. 10. When a derivative is large whereas the other is small, the area of
the cell in the origin can be small. But as a large part of the original mesh
is covered a large number of samples is necessary to compute the goal value
thus minification sampling is required.
ou?2 v 2 7
oy + oy . . .
; ’ In the calculus of v the choice of the maximum instead
— 5 v of a product, for an area, is important to avoid the case
5% §r - - . - - - - -
9 o= where the derivative in a dimension is very large while in

Fig. 9. Up right: an elementary displacement in the goal. Up left: the
equivalent displacement in the original space given by the derivatives of the
backward transformation H. Bottom left: in purple, a geometric view of the
Jacobian. Bottom right: in red, a geometric view of the surface value chosen
by the graphical board for defining the number of samples: it is a upper bound

since the parallelogram has a smaller area than the square constructed from
its larger side.

the other dimension the derivative is very small (Fig. 10).
In this case the Jacobian is small but the number of cells
covered in the original mesh is important. In last generation
of graphical board this problem is handled specifically
with anisotropic sampling and there are two kind of v,
one for each dimension. Derivatives in the graphical board
are approximated by calculating finite differences using the



evaluation of H for each corner of the goal cell.

a) For example in the Cartesian to polar mapping: :

p @ )
9 oy cos(0) sin(0) 1
B2 |=] o) cosit)/p ' =, @
and
sin” cos?
v? = max {(0052 0) + pz(e) ); (Sin2(9) + p2(9) )}

Eqg. 20 explains the number of sample choices in the adaptive
sampling (Eq. 14).

2) Sampling and interpolation formulas: mipmapping: in a
case of minification a cell in the goal grid overlap several cells
in the original one. Thus the solution chosen by the graphical
board is to compute an appropriate coarse resolution of the
mesh A which gives a new grid with which magnification
could be used. Then the process of texture mapping is:

1) pre-compute several resolutions of the texture A;

2) calculate for each pixel of B the two closest pre-

computed resolutions;

3) for the two resolutions calculate the magnification val-
ues;

4) interpolate linearly between the two magnification val-
ues based on the distance between appropriate resolution
and pre-computed ones.

To change from one resolution to a coarser one, each dimen-
sion is divided by a power of 2. That provides a pyramid of
textures and the appropriate resolution is given by:

Az, y) = logy[v(z, y)].
Then the two closest resolution are given by:
e dl = [Az.y)]

The magnification rules for sampling and interpolating are then
applied to each of the selected texture, yielding two corre-
sponding values g'(z,y) for the d; resolution and g2(z,y)
for do resolution. The final value for the cell (z,y) is then
found as a 1D interpolation between the two resolutions:

9(z,y) = (1= frac(Mz, 9))g" (x,y)+ frac(\(z,y))g* (z, y)

The process of using several resolution of the original mesh
is called mipmapping and is accelerated by graphical boards.
These texture mapping schemes are part of the OpenGL2.0
specification, [13].

Thus it just remains to the programmer to define H which
is the change of coordinate function. This definition could be
done by providing to the graphical board the result of each
of the required evaluation of H. It is also possible to draw
geometric primitives: triangles, quadrilaterals or polygons
which vertex are given in the goal coordinate system and are
also associated with corresponding coordinates in the original
coordinate system. Between each vertex interpolation is made
by the graphical board to deduce all required coordinates.

Fig. 11. A map of the values of the occupied sensor model in polar coordi-
nates, 0 in abscissa and p in ordinate at different scales. They coorespond to
5 level of mipmaps and are used to calculate the change of coordinate system.
The three colors represents the three possible values in a ray as explained in
11-B.5 (they do not represent the real numerical values).

w

Fig. 12.  Occupancy grid generated by the GPU. Compared to fig. 11 the
geometric transformation apply, and each column in fig. 11 is transformed in
a triangle in the final grid. The result weakly differs from fig. 1(b) with a
calculus time many order faster.

Therefore the first method is more precise but computationally
more expensive than the second.

In the case of polar to Cartesian change of coordinate system
two matrices are drawn with (p, §) coordinates one for occ and
one for emp. Let the polar sensor model gridsthose matrices.
Each column of a matrix corresponds to one angle and one
range measurement and in this column is plotted the sensor
model corresponding to the current range measurement. Then
mipmaps of the two matrices are computed. Finally the change
of geometry is processed by drawing geometric primitives:
for each range measurement the corresponding quadrilateral
is drawn in the Cartesian grid, each of the vertex of the
quadrilateral is associated with the corners of the line of the
1-D sensor-model.

V. RESULTS: COMPARISON BETWEEN EXACT SAMPLING
AND GPU SAMPLING

We test all the algorithms and in particular the GPU one on
real data, i.e. 2174 sick scans. We obtain the results that are
summarized in the last line of tab I. We made a simulation



with 4 Sicks to compare fusion results too and we obtained
the following results: Fig 13.

Fig. 13.

Fusion view for 4 Sicks LMS-291.

A. Precision

The obtained precision is close to the exact solution, not as
close as with the adaptive sampling method but far better than
with the state-of-the-art method. Details close to the vehicle
are well fit and any kind of resolution could be achieved for the
OG. To avoid the infinite increasing of the required precision
close to the sensors and for safety, we choose to consider the
worst occupancy case for every cell that lies within a 30cm
radius around the sensor. Outside this safety area the remaining
error is almost null so that when considering these particular
grids, precision is very close to that obtained with the exact
algorithm.

B. Performance

To evaluate the results an NVIDIA GeForce FX Go5650 for
the GPU is used ( tab I ). For the GPU, two calculus times
are given: first the computation time with the result transfer
from the GPU to the CPU in memory main storage (MS)
and second without this transfer. The difference is important
and in the first case most of the processing time is devoted
to data transfer, so if further computations were made on
GPU, a lot of time could be saved. In this case the amazing
number of 50 sensors can be computed at real-time with the
GPU. It is important to note that, as only the result of the
fusion needs to be sent to the main storage, a little more than
half a second remains to compute OGs for other sensors and
fusion when using a 10 H z measurement rate. So in the current
conditions, 12 others sensors can be processed at the same
time because the fusion process takes about as long as the
occupancy computation, i.e. 2ms.

V1. FusioN oN GPU

Floating number have a limited precision, so to avoid
numerical pitfalls, a logarithm fusion is very often used. On the
actual graphical boards, floating precision is restricted to 32
bits, so this is an important issue of the sensor fusion on GPU,
thus the logarithm fusion is presented here. As the occupancy
is a binary variable, a quotient between the likelihoods of
the two states of the variable is sufficient to describe the
binary distribution. The quotient makes the marginalization
term disappear and thanks to a logarithm transformation, sums
are sufficient for the inference.

Z) zl|occ
log 227 emp +; ;@)
For each sensor, the two appropriate polar sensor model
gridsare constructed with the associated set of mipmaps.
For each Cartesian cell, the two sensor models at the right
resolution are fetched then an interpolated value is calculated
from samples of each of them, then the log-ratio is calculated.
The final value is added to the current pixel value. This process
uses the processor units dedicated to transparency in the
graphical board. The occupancy grid for each sensor appears
as a layer where transparency decreases as the occupancy of
the cell increases.

©

Fig. 14.  (a) V-grid with only the first sensor measurements. (b) V-grid with
the fusion of the two first sensors measurements. (c) V-grid with the fusion
of the four sensors.

And the final grid, fusion of all sensors, is just the sum of
all the layers.

VIl. CONCLUSION

Building occupancy grids to model the surrounding environ-
ment of a vehicle implies to fusion the occupancy information



provided by the different embedded sensors in the same grid.
The principal difficulty comes from the fact that each sensor
can have a different resolution, but also that the resolution of
some sensors varies with the location in the field of view. This
is the case with a lot of telemetric sensors and especially laser
range-finders. The need to switch coordinate systems is a fre-
quent problem in Bayesian model ling, and we have presented
a new approach to this problem that offers an exact solution
and which is absolutely general. This has lead us to evaluate
a new design of OG building based upon a graphic board
that yields high performances: a large field of view, a high
resolution and a fusion with up to 13 sensors at real-time. The
quality of the results is far better than with the classic method
of ray tracing and the comparison with the exact results shows
that we are very close to the exact solution. This new design of
OG building is an improvement for environment-model ling in
robotics, because it proves, in a theoretical and practical way,
that a chip hardware can handle the task of fusion rapidly.
The gain of CPU-time can therefore be dedicated to other
tasks, and especially the integration of this instantaneous grid
in a mapping process. In future works, we plan to explore the
question of 3D OG modeling using graphical hardware. We
will also investigate whether GPUs are suitable for other low-
level robotic tasks. Videos and full results could be found at
http://emotion.inrialpes.fr/ yguel.
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