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Abstract: In this paper, we propose a new method based on Hidden Markov Models to interpret temporal
sequences of sensor data from mobile robots to automatically detect features.

Hidden Markov Models have been used for a long time in pattern recognition, especially in speech
recognition. Their main advantages over other methods (such as neural networks) are their ability to
model noisy temporal signals of variable length.

We show in this paper that this approach is well suited for interpretation of temporal sequences of
mobile-robot sensor data. We present two distinct experiments and results: the first one in an indoor
environment where a mobile robot learns to detect features like open doors or T-intersections, the second
one in an outdoor environment where a different mobile robot has to identify situations like climbing a
hill or crossing a rock.
Keywords: sensor data interpretation, Hidden Markov Models, mobile robots

1. Introduction

A mobile robot operating in a dynamic environ-
ment is provided with sensors (infrared sensors,
ultrasonic sensors, tactile sensors, cameras. . . ) in
order to perceive its environment. Unfortunately,
the numeric, noisy data furnished by these sensors
are not directly useful; they must first be inter-
preted to provide accurate and usable information
about the environment. This interpretation plays
a crucial role, since it makes it possible for the
robot to detect pertinent features in its environ-
ment and to use them for various tasks.

For instance, for a mobile robot, the automatic
recognition of features is an important issue for the
following reasons:

1. For successful navigation in large-scale envi-
ronments, mobile robots must have the ca-
pability to localize themselves in their envi-
ronment. Almost all existing localization ap-
proaches (Borenstein, Everett, & Feng, 1996)
extract a small set of features. During nav-
igation, mobile robots detect features and
match them with known features of the envi-
ronment in order to compute their position;

2. Feature recognition is the first step in the au-
tomatic construction of maps. For instance,

∗. NASA contractor with RIACS.

at the topological level of his “spatial se-
mantic hierarchy” system, Kuipers (Kuipers,
2000) incrementally builds a topological map
by first detecting pertinent features while
the robot moves in the environment and then
determining the link between a new detected
feature and features contained in the current
map;

3. Features can be used by a mobile robot as
subgoals for a navigation plan (Lazanas &
Latombe, 1995).

In semi-autonomous or remote, teleoperated
robotics, automatic detection of features is a nec-
essary ability. In the case of limited and delayed
communication, such as for planetary rovers, hu-
man interaction is restricted, so feature detection
can only be practically performed through on-board
interpretation of the sensor information. More-
over, feature detection from raw sensor data, es-
pecially when based on a combination of sensors,
is a complex task that generally cannot be done
in real time by humans, which would be neces-
sary even if teleoperation were possible given the
communication constraints. For all these reasons,
feature detection has received considerable atten-
tion over the past few years. This problem can be
classified with the following criteria:
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Natural/artificial The first criterion is the na-
ture of the feature. The features can be artifi-
cial, that is, added to the existing environment.
Becker et al (Becker, Salas, Tokusei, & Latombe,
1995) define a set of artificial features2 located
on the ceiling and use a camera to detect them.
Other techniques use natural features, that is, fea-
tures already existing in the environment. For in-
stance, Kortenkamp, Baker, and Weymouth (Ko-
rtenkamp, Douglas Baker, & Weymouth, 1992)
use ultrasonic sensors to detect natural features
like open doors and T-intersections.

Using artificial features makes the process of
detection and distinction of features easier, be-
cause the features are designed to be simple to de-
tect. But this approach can be time-consuming,
because the features have to be designed and to
be positioned in the environment. Moreover, us-
ing artificial features is impossible in unknown or
remote environments.

Analytical/statistical methods Feature detec-
tion has been addressed by different approaches
such as analytical methods or pattern classifica-
tion methods. In the analytical approach, the
problem is studied as a reasoning process. A knowl-
edge based system uses rules to build a repre-
sentation of features. For instance, Kortenkamp,
Baker, and Weymouth (Kortenkamp et al., 1992)
use rules about the variation of the sonar sen-
sors to learn different types of features and adds
visual information to distinguish two features of
the same type. In contrast, a statistical pattern-
classification system attempts to describe the ob-
servations coming from the sensors as a random
process. The recognition process consists of the as-
sociation of the signal acquired from sensors with a
model of the feature to identify. For instance, Ya-
mauchi (Yamauchi, 1995) uses ultrasonic sensors
to build evidence grids (Elfes, 1989). An evidence
grid is a grid corresponding to a discretization of
the local environment of the mobile robot. In this
grid, Yamauchi’s method updates the probability
of occupancy of each grid tile with several sensor
data. To perform the detection, he defines an al-
gorithm to match two evidence grids.

These two approaches are complementary. In
the analytical approach, we aim to understand the
sensor data and build a representation of these
data. But as the sensor data may be noisy, so
their interpretation may not be straightforward;
moreover, overly simple descriptions of the sensor
data (e.g., “current rising, steady, then falling”)
may not directly correspond to the actual data.

In the second approach, we build models that

2. The features are patterns composed of 3x3 squares, and
each square is colored in black or white

represent the statistical properties of the data. This
approach naturally takes into account the noisy
data, but it is generally difficult to understand the
correspondence between detected features and the
sensor data.

A solution that combines the two approachs
could build models corresponding to human’s un-
derstanding of the sensor data, and adjust the
model parameters according to the statistical prop-
erties of the data.

Automatic/manual feature definition. The
set of features to detect could be given manually
or discovered automatically (Thrun, 1998). In the
manual approach, the set is defined by humans us-
ing the perception they have of the environment.
Since high level robotic system are generally based
loosely on human perception, the integration of
feature detection in such a system is easier than
for automatically-discovered features. Moreover,
in teleoperated robotics, where humans interact
with the robot, the features must correspond to
the high level perception of the operator to be
useful. These are the main reasons the set is al-
most always defined by humans. However, prop-
erly defining the features so that they can be recog-
nized robustly by a robot remains a difficult prob-
lem; this paper proposes a method for this prob-
lem. In contrast, when features are discovered au-
tomatically, humans must find the correspondence
between features perceived by the robot and fea-
tures they perceive. The difficulty now rests on
the shoulders of the humans.

Temporally extended/instantaneous features.
Some features can only be identified by consid-
ering a temporal sequence of sensor information,
not simply a snapshot, especially with telemetric
sensors. Consider for example the detection of a
feature in (Kortenkamp et al., 1992) or the con-
struction of an evidence grid in (Yamauchi, 1995):
these two operations use a temporal sequence of
sensor information. In general, instantaneous (i.e.,
based over a simple snapshot) detection is less ro-
bust than temporal detection.

This paper describes an approach that com-
bines an analytical approach for the high-level topol-
ogy of the environment with a statistical approach
to feature detection. The approach is designed to
detect natural, temporally extended features that
have been manually defined. The feature detection
uses Hidden Markov Models (HMMs). HMMs are
a particular type of probabilistic automata. The
topology of these automata corresponds to a hu-
man’s understanding of sequences of sensor data
characterizing a particular feature in the robot’s
environment. We use HMMs for pattern recog-
nition. From a set of training data produced by
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its sensors and collected at a feature that it has
to identify — a door, a rock, . . . — the robot ad-
justs the parameters of the corresponding model to
take into account the statistical properties of the
sequences of sensor data. At recognition time, the
robot chooses the model whose probability given
the sensor data — the a posteriori probability —
is maximized. We combine analytical methods to
define the topology of the automata with statis-
tical pattern-classification methods to adjust the
parameters of the model.

The HMM approach is a flexible method for
handling the large variability of complex temporal
signals; for example, it is a standard method for
speech recognition (Rabiner, 1989). In contrast
to dynamic time warping, where heuristic train-
ing methods for estimating templates are used,
stochastic modeling allows probabilistic and au-
tomatic training for estimating models. The par-
ticular approach we use is the second-order HMM
(HMM2), which have been used in speech recog-
nition (Mari, Haton, & Kriouile, 1997), often out-
performing first-order HMMs.

This paper is organized as follow. We first de-
fine the HMM2 and describe the algorithms used
for training and recognition. Section 3 is the de-
scription of our method for feature detection com-
bining HMM2s with a grammar-based analytical
method describing the environment. In section 4,
we present an experiment of our method to detect
natural features like open doors or T-intersections
in an indoor structured environment for an au-
tonomous mobile robot. A second experiment on a
semi-autonomous mobile robot in an outdoor envi-
ronment is described in section 5. Then we report
related work in section 6. We give some conclu-
sions and perspectives in section 7.

2. Second-order Hidden Markov

Models

In this section, we only present second-order Hid-
den Markov Models in the special case of multi
dimensional continuous observations (representing
the data of several sensors). We also detail the
second-order extension of the learning algorithm
(Baum-Welch algorithm) and the recognition al-
gorithm (Viterbi algorithm). A very complete tu-
torial on first order Hidden Markov Models can be
found in (Rabiner, 1989).

2.1 Definition

In an HMM2, the underlying state sequence is a
second-order Markov chain. Therefore, the prob-
ability of a transition between two states at time
t depends on the states in which the process was

at time t − 1 and t − 2.

A second order Hidden Markov Model λ is spec-
ified by:

• a set of N states called S containing at least
one final state;

• a 3 dimensional matrix aijk over S x S x S

aijk = Prob(qt = sk/qt−1 = sj , qt−2 = si) (1)

= Prob(qt = sk/qt−1 = sj , qt−2 = si,

qt−3 = ...)

where qt is the actual state at time t;

with the constraints

N∑

k=1

aijk = 1 with 1 ≤ i ≤ N , 1 ≤ j ≤ N

• each state si is associated with a mixture of
Gaussian distributions :

bi(Ot) =

M∑

m=1

cimN (Ot;µim,Σim), (2)

with

M∑

m=1

cim = 1

where Ot is the input vector (the frame) at
time t. The mixture of Gaussian distribu-
tions is one of the most powerful probability
distribution to represent complex and multi-
dimensional probability space.

The probability of the state sequence Q = q1, q2,...,
qT is defined as

Prob(Q) = πq1
aq1q2

T∏

t=3

aqt−2qt−1qt
(3)

where Πi is the probability of state si at time t = 1
and aij is the probability of the transition si → sj

at time t = 2.

Given a sequence of observed vectors O = o1

, o2,...,oT , the joint state-output probability Prob(
Q,O/λ), is defined as :

Prob(Q,O/λ) =

Πq1
bq1

(O1)aq1q2
bq2

(O2)

T∏

t=3

aqt−2qt−1qt
bqt

(Ot) (4)
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2.2 The Viterbi algorithm

The recognition is carried out by the Viterbi algo-
rithm (Forney, 1973) which determines the most
likely state sequence given a sequence of observa-
tions.

In Hidden Markov Models, many state sequences
may generate the same observed sequence O = o1

,...,oT . Given one such output sequence, we are
interested in determining the most likely state se-
quence Q = q1,...,qT that could have generated
the observed sequence.

The extension of the Viterbi algorithm to HMM2
is straightforward. We simply replace the refer-
ence to a state in the state space S by a reference
to an element of the 2-fold product space S x S.
The most likely state sequence is found by using
the probability of the partial alignment ending at
transition (sj , sk) at times (t-1,t)

δt(j, k) = (5)

Prob(q1, ...qt−2, qt−1 = sj , qt = sk, o1, ..., ot/λ)

2 ≤ t ≤ T, 1 ≤ j, k ≤ N.

Recursive computation is given by equation

δt(j, k) = max1≤i≤N [δt−1(i, j) · aijk] · bk(Ot) (6)

3 ≤ t ≤ T, 1 ≤ j, k ≤ N.

The Viterbi algorithm is a dynamic program-
ming search that computes the best partial state
sequence up to time t for all states. The most
likely state sequence q1, ..., qT is obtained by keep-
ing track of back pointers for each computation
of which previous transition leads to the maximal
partial path probability. By tracing back from the
final state, we get the most likely state sequence.

2.3 The Baum-Welch algorithm

The learning of the models is performed by the
Baum-Welch algorithm using the maximum like-
lihood estimation criteria that determines the best
model’s parameters according to the corpus of items.
Intuitively, this algorithm counts the number of
occurrences of each transition between the states
and the number of occurrences of each observa-
tion in a given state in the training corpus. Each
count is weighted by the probability of the align-
ment (state, observation). It must be noted that
this criteria does not try to separate models like
a neural network does, but only tries to increase
the probability that a model generates its corpus
independently of what the other models can do.

Since many state sequences may generate a
given output sequence, the probability that a model
λ generates a sequence o1,...,oT is given by the
sum of the joint probabilities (given in equation 4)

over all state sequences (i.e, the marginal den-
sity of output sequences). To avoid combinato-
rial explosion, a recursive computation similar to
the Viterbi algorithm can be used to evaluate the
above sum. The forward probability αt(j, k) is :

prob((O1, ..., Ot = o1, ..., ot), qt−1 = sj , qt = sk/λ)
(7)

This probability represents the probability of start-
ing from state 0 and ending with the transition
(sj , sk) at time t and generating output o1,...,ot

using all possible state sequences in between. The
Markov assumption allows the recursive computa-
tion of the forward probability as :

αt+1(j, k) =
N∑

i=1

αt(i, j).aijk.bk(Ot+1), (8)

2 ≤ t ≤ T − 1, 1 ≤ j, k ≤ N

This computation is similar to Viterbi decoding
except that summation is used instead of max.
The value αT (j, k) where sk = N is the probability
that the model λ generates the sequence o1, ..., ot.
Another useful quantity is the backward function
βt(i, j), defined as the probability of the partial
observation sequence from t + 1 to T , given the
model λ and the transition (si, sj) between times
t − 1 and t, can be expressed as:

βt(i, j) = Prob(Ot+1, ...OT /qt−1 = si, qt = sj , λ),

2 ≤ t ≤ T − 1, 1 ≤ i, j ≤ N (9)

The Markov assumption allows also the recursive
computation of the backward probability as :

1. Initialization

βT (i, j) = 1 if 1 ≤ i, j ≤ N

2. Recursion for 2 ≤ t ≤ T − 1

βt(i, j) =

N∑

i=1

βt+1(j, k).aijk.bk(Ot+1) (10)

1 ≤ i, j ≤ N

Given a model λ and an observation sequence
O, we define ηt(i, j, k) as the probability of the
transition si −→ sj −→ sk between t−1 and t+1
during the emission of the observation sequence.

ηt(i, j, k) = P(qt−1 = si, qt = sj , qt+1 = sk/O, λ),

2 ≤ t ≤ T − 1.

We deduce:

ηt(i, j, k) =
αt(i, j)aijkbk(Ot+1)βt+1(j, k)

P (O|λ)
, (11)

2 ≤ t ≤ T − 1.
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As in the first order, we define ξt(i, j) and γt(i):

ξt(i, j) =

N∑

k=1

ηt(i, j, k), (12)

γt(i) =
N∑

j=1

ξt(i, j). (13)

ξt(i, j) represents the aposteriori probability
that the stochastic process accomplishes the tran-
sition si → sj between t − 1 and t assuming the
whole utterance.

γt(i) represents the aposteriori probability that
the process is in the state i at time t assuming the
whole utterance.

At this point, to get the new maximum like-
lihood estimation (ML) of the HMM2, we can
choose two ways of normalizing: one way gives
an HMM1, the other an HMM2.

The transformation in HMM1 is done by av-
eraging the counts ηt(i, j, k) over all the states i
that have been visited at time t − 1.

η1
t (j, k) =

N∑

i=1

ηt(i, j, k) (14)

is the classical first order count of transitions be-
tween 2 HMM1 states between t and t + 1.

Finally, the first-order maximum likelihood (ML)
estimate of aijk is:

aijk =

∑
t η1

t (j, k)∑
k,t η1

t (j, k)
=

∑
i,t ηt(i, j, k)

∑
i,k,t ηt(i, j, k)

. (15)

This value is independent of i and can be written
as ajk.

The second-order ML estimate of aijk is given
by the equation:

aijk =

∑
t ηt(i, j, k)∑

k,t ηt(i, j, k)

=

∑T−2

t=1
ηt+1(i, j, k)

∑T−2

t=1
ξt(i, j)

. (16)

The ML estimates of the mean and covariance
are given by the formulas:

µi =

∑
t γt(i)Ot∑

t γt(i)
, (17)

Σi =

∑
t γt(i)(Ot − µi)(Ot − µi)

t

∑
t γt(i)

. (18)

3. Application to mobile robotics

The method presented in this paper performs fea-
ture detection by combining HMM2s with a grammar-
based description of the environment. To apply

second order Hidden Markov Models to automat-
ically detect features, we must accomplish a num-
ber of steps. In this section we review these steps
and our approach for treating the issues arising in
each of them. In the following sections we expand
further on the specifics for each experiment.

The steps necessary to apply HMM2s to detect
features are the following:

1. Defining the number of distinct features to
identify and their characterization.

As Hidden Markov Models have the abil-
ity to model signals whose properties change
with time, we choose a set of sensors (as the
observations) that have noticeable variations
when the mobile robot is observing a par-
ticular feature. The features are chosen for
the fact that they are repeatable and human-
observable (for the purposes of labeling and
validation). So, we define coarse rules to
identify each feature, based on the variation
of the sensors constituting the observation
to identify each feature. These rules are for
human use, for segmentation and labeling of
the data stream of the training corpus. The
set of chosen features is a complete descrip-
tion of what the mobile robot can see during
its run. All other unforeseen features are
treated as noise.

2. Finding the most appropriate model to rep-
resent a specific feature.

Figure 1: Topology of states used for each model
of feature

Designing the right model in pattern recog-
nition is known as the model selection prob-
lem and is still an open area of research.
Based on our experience in speech recogni-
tion, we used the well known left-right model
(figure 1), which efficiently performs tem-
poral segmentation of the data. Recogni-
tion begins in the leftmost state, and each
time an event characterizing the feature is
recognized it advances to the next state to
the right. When the rightmost state has
been reached, the recognition of the feature
is complete.

237



In this model, the duration in state j may be
defined as :

dj(0) = 0

dj(1) = aijk, i 6= j 6= k

dj(n) = (1 − aijk) · an−2

jjj · (1 − ajjj),

n ≥ 2

The state duration in a HMM2 is governed
by two parameters: the probability of enter-
ing a state only once, and the probability
of visiting a state at least twice, with the
latter modeled as a geometric decay. This
distribution fits a probability density of du-
rations (Crystal & House, 1988) better than
the classical exponential distribution of an
HMM1. This property is of great interest in
speech recognition when a HMM2 models a
phoneme in which a state captures only 1 or
2 frames.

The number of states is generally chosen as a
monotone function of the length of the pat-
tern to be identified according to the state
duration probabilities. This choice gives gen-
erally high rate of recognition. Sometimes,
adding or suppressing one or two states has
been experimentally observed to increase the
rate of recognition. The number of states is
generally chosen to be the same for all the
models.

3. Collecting and labeling a corpus of sequence
of observations during several runs to per-
form learning.

The corpus is used to adjust the parameters
of the model to take into account the sta-
tistical properties of the sequences of sensor
data. Typically, the corpus consists of a set
of sequences of features collected during sev-
eral runs of the mobile robot. So, these runs
should be as representative as possible of the
set of situations in which features could be
detected. The construction of the corpus is
time-consuming, but is crucial to effective
learning. A model is trained with sequences
of sensor data corresponding to the particu-
lar feature it represents. Since a run is com-
posed of a sequence of features (and not only
one feature), we need to segment and label
each run. To perform this operation, we use
the previously defined coarse rules to iden-
tify each feature and extract the relevant se-
quences of data. Finally, we group the seg-
ments of the runs corresponding to the same
feature to form a corpus to train the model
of that feature;

4. Defining a way to be able to detect all the
features seen during a run of the robot.

For this, the robot’s environment is described
by means of a grammar that restricts the
set of possible sequences of models. Using
this grammar, all the HMM2s are merged
in a bigger HMM on which the Viterbi al-
gorithm is used. This grammar is a regu-
lar expression describing the legal sequences
of HMM2s; it is used to know the possible
ways of merging the HMM2s and their like-
lihood. More formally, this grammar repre-
sents all possible Markov chains correspond-
ing to the hidden part of the merged models.
In these chains, nodes correspond to HMM2s
associated with a particular feature. Edges
between two HMM2s correspond to a merge
between the last state of one HMM2 and the
first state of the other HMM2. The proba-
bility associated with each edge represents
the likehood of the merge.

Then, the most likely sequence of states, as
determined by the Viterbi algorithm, deter-
mines the ordered list of features that the
robot saw during its run. It must be noted
that the list of models is known only when
the run is completed. We make the hypoth-
esis that two or more of the features cannot
overlap. The use of a grammar has another
important advantage. It allows the elimina-
tion of some sequences that will never hap-
pen in the environment. From a computa-
tional point of view, the grammar will avoid
some useless calculations.

The grammar can be given apriori or learned.
To learn the grammar, we use the former
models and estimate them on unsegmented
data like in the recognition phase. Specifi-
cally, we merge all the models seen by the
robot during a complete run into a larger
model corresponding to the sequence of ob-
served items and train the resulting model
with the unsegmented data.

5. Evaluating the rate of recognition.

For this, we define a test corpus composed
of several runs. For each run, a human com-
pares the sequence of features composing the
run, using knowledge of the environment,
with what has been detected by the Viterbi
algorithm. A feature is recognized if it is de-
tected by the corresponding model close to
its real geometric position. A few types of
errors can occur:

Insertion: the robot has seen a non-existing
feature (false positive). This corresponds
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to an over-segmentation in the recogni-
tion process. Insertions are currently
considered when the width of the in-
serted feature is more than 80 centime-
ters;

Deletion: the robot has missed the feature
(false negative);

Substitution: the robot has confused the
feature with another.

In the experiments that we have run, the re-
sults are summarized first as confusion ma-
trices, where an element cij is the number of
times the model j has been recognized when
the right answer was feature i, and second
with the global rate of recognition, insertion,
substitution and deletion.

In the two following sections, we present two ex-
periments where we used second-order Hidden Markov
Models to detect features using sequence of mobile-
robot sensor data. In each section, after a brief
description of the problem and the mobile robot
used, we explain the specific solution to each of
the issues introduced in this section.

4. First experiment: Learning and

recognition of features in an

indoor structured environment

In this first experiment, we used second order Hid-
den Markov Models to learn and to recognize in-
door features such as T-intersections and open doors
given sequences of data from ultrasonic sensors of
an autonomous mobile robot. These features are
generally called places.

4.1 The Nomad200 mobile robot

turret

base

ultrasonic
sensors

infrared

tactile
sensors

sensors

Figure 2: Our mobile robot

In this experiment, we used a Nomad200 (fig-
ure 2) manufactured by Nomadic Technologies1.

1. http://www.robots.com

It is composed of a base and a turret. The base
consists of 3 wheels and tactile sensors. The tur-
ret is an uniform 16-sided polygon. On each side,
there is an infrared and an ultrasonic sensor. The
turret can rotate independently of the base.

Tactile Sensors: A ring of 20 tactile sensors
surrounds the base. They detect contact with ob-
jects. They are just used for emergency situations.
They are associated with low-level reflexes such as
emergency stop and backward movement.

Ultrasonic Sensors: The angle between two ul-
trasonic sensors is 22.5 degrees, and each ultra-
sonic sensor has a beam width of approximately
23.6 degrees. By examining all 16 sensors, we can
obtain a 360 degree panoramic view fairly rapidly.
The ultrasonic sensors give range information from
17 to 255 inches. But the quality of the range in-
formation greatly depends on the surface of reflec-
tion and the angle of incidence between the ultra-
sonic sensor and the object.

Infrared Sensors: The infrared sensors mea-
sure the light differences between an emitted light
and an reflected light. They are very sensitive to
the ambient light, the object color, and the ob-
ject orientation. We assume that for short dis-
tances the range information is acceptable, so we
just use infrared sensors for the areas shorter than
17 inches, where the ultrasonic sensors are not us-
able.

4.2 Specifics of HMM2 application to
indoor place identification

Here we discuss the specific issues arising from
applying HMM2s to the problem of indoor place
identification, along with our solutions to those
issues. The numbering corresponds to the num-
bering of the steps in section 3.

4.2.1 The set of places

on the left on the left

corridor open door across

from each other

T−intersection
on the right

T−intersection
on the left

open door
on the right on the left

open door

start of corridor
on the right

end of corridor
on the right

start of corridor end of corridor

Figure 3: The 10 models to recognize
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Currently, we model ten distinctive places that
are representative of an office environment: a cor-
ridor, a T-intersection on the right (resp. left) of
the corridor, an open door on the right (resp. left)
of the corridor, a “starting” corner on the right
(resp. left) when the robot moves away from the
corner, an “ending” corner on the right (resp. left)
side of the corridor when the robot arrives at this
corner, two open doors across from each other (fig-
ure 3). This set of items is a complete description
of what the mobile robot can see during its run.
All other unforeseen objects, like people wander-
ing along in a corridor, are treated as noise.

123

1’2’3’

Figure 4: The six sonars used for the characteri-
zation on each side

To characterize each feature, we need to select
the pertinent sensor measures to observe a place.
This task is complex because the sensor measures
are noisy and because at the same time that there
is a place on the right side of the robot, there is
another place on the left side of the robot. For
these reasons, we choose to characterize features
separately for each side, using the sensors perpen-
dicular to each wall of the corridor and its two
neighbor sensors (figure 4). These three sensors
normally give valid measures.

Since all places except the corridor cause a no-
ticeable variation on these three sensors over time,
we define the beginning of a place on one side when
the first sensor’s measure suddenly increases and
the end of a place when the last sensor’s measure
suddenly decreases. Figure 5 shows an example of
the segmentation on the right side with these three
sensors of a part of an acquisition corresponding
to a T-intersection. The first line segment is the
beginning of the T-intersection (sudden increase
on the first sensor), and the second line segment
is the end of the T-intersection (sudden decrease
on the third sensor). To the left of the first line
and to the right of the second line are corridors.
Figure 6 shows the position of the robot at the be-

Sensor 3

Sensor 2

Sensor 1

Figure 5: The characterization corresponding to a
T-intersection on the right side of the
robot

23 1 123

Figure 6: The three sonars used for the segmenta-
tion of a T-intersection

ginning and at the end of the T-intersection and
the measures of the three sensors used at these two
positions for the characterization.

Next, we must define “global places” taking
into account what can be seen on the right side
and on the left side simultaneously. To build the
global places, we combine the 5 previous places
observable on the right side with the 5 places ob-
servable on the left side.

An example of the characterization of these 10
places is given in figure 7. This characterization
will be used for segmentation and labeling the cor-
pus for training and evaluation.

4.2.2 The model to represent each place

In the formalism described in section 2, each place
to be recognized is modeled by an HMM2 whose
topology is depicted in figure 1.
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Figure 7: Example of characterization of the 10 places
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As the robot is equipped with 16 ultrasonic
sensors, the HMM2 models the 16-dimensional,
real-valued signal coming from the battery of ul-
trasonic sensors.

4.2.3 Corpus collecting and labeling

Figure 8: The corridor used to make the learning
corpus

We built a corpus to train a model for each of
the 10 places. For this, our mobile robot made
50 passes (back and forth) in a very long corri-
dor (approximately 30 meters). This corridor (fig-
ure 8) contains two corners (one at the start of
the corridor and one at the end), a T-intersection
and some open doors (at least four, and not al-
ways the same). The robot ran with a simple nav-
igation algorithm (Aycard, Charpillet, & Haton,
1997) to stay in the middle of the corridor in a
direction parallel to the two walls constituting the
corridor. While running, the robot stored all of its
ultrasonic sensor measures. The acquisitions were
done in real conditions with people wandering in
the lab, doors completely or partially opened and
static obstacles like shelves.

A pass in the corridor contains not only one
place but all the places seen while running in the
corridor. To learn a particular place, we must
manually segment and label passes in distinctive
places. The goal of the segmentation and the la-
beling is to identify the sequence of places the
robot saw during a given pass. To perform this
task, we use the rules defined to characterize a
place. Finally, we group the segments from each
pass corresponding to the same place. Each learn-
ing corpus associated with a model contains se-
quences of observations of the corresponding place.

4.2.4 The recognition phase

The goal of the recognition process is to iden-
tify the 9 places in the corridor. We use a tenth
model for the corridor because the Viterbi algo-
rithm needs to map each frame to a model during
recognition. The corridor model connects 2 items
much like a silence between 2 words in speech
recognition. During this experiment, the robot
uses its own reactive algorithm to navigate in the
corridor and must decide which places have been
encountered during the run. We took 40 acquisi-
tions and used the ten models trained to perform

the recognition.

4.3 Results and discussion

Results are given in table 1 and 2.

number %
Seen 144 100

Recognized 130 90
Substituted 11 9

Deleted 2 1
Inserted 60 42

Table 2: Global rate of recognition

We notice that the rate of recognition are very
high, and the rate of confusion are very low. This
is due to the fact that each place has a very partic-
ular pattern, and so it is very difficult to confuse it
with an other. In fact, HMM2 used hidden char-
acteristics (i.e, characteristics not explicitly given
during the segmentation and the labelization of
places) to perform discrimination between places.
In particular, a place is characterized by variations
on sensors on one side of the robot, but too with
variations on sensors located on the rear or the
front of the robot. Observations of sensors situ-
ated on the front of the robot are very different
when the robot is in the middle of the corridor
than at the end of the corridor. So, the models
of start of corridor (resp. end of corridor) could
be recognized only when observations of front and
rear sensors correspond to the start of a corridor
(resp. the end of a corridor), which will rarely oc-
cur when the robot is in the middle of the corridor.
So, it is nearly impossible to have insertions of the
start of a corridor (resp. end of corridor) in the
middle of the corridor.

HMM2 have been able to learn this type of
hidden characteristics and to use them to perform
discrimination during recognition.

But, we see that T-intersection and open doors
have very similar characteristics using sensor infor-
mation, and there is nearly no confusion between
these two places. An other characteristic has been
learned by the HMM2 to perform the discrimi-
nation between these two places. The width of
open doors is different from the width of intersec-
tions, the discrimination between these two types
of places is improved because of the duration mod-
eling capabilities of the HMM2, as presented above
and as shown by (Mari et al., 1997).

The rate of recognition of two open doors across
from each other is mediocre (50%). There exists
a great variety of doors that can overlap and we
only define one model that represents all these sit-
uations. So this model is a very general model of
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right right right right left left left left door Ins.
start end inter. door start end inter. door door

right start 7 0 0 0 0 0 0 0 0 0
right end 0 7 0 0 0 1 0 1 0 0

right inter. 0 0 7 0 0 0 0 0 0 0
right door 0 0 0 42 0 0 0 1 1 25
left start 0 0 0 0 8 0 0 0 0 0
left end 0 0 0 0 0 6 0 0 0 0

left inter. 0 0 0 0 0 0 8 0 0 0
left door 1 0 0 4 0 0 1 43 1 34
door door 0 0 1 0 0 0 0 1 2 1
deletions 0 1 0 0 0 0 0 0 0 0

Total 8 8 8 46 8 7 9 46 4 60
% reco. 88 88 88 91 100 86 89 93 50

Table 1: Confusion matrix of places

two doors across from each other. Defining more
specific models of this place would lead to increase
the associate rate of recognition.

The major problem is the high rate of inser-
tion. Most of the insertions are due to the inaccu-
racy of the navigation algorithm and to the unex-
pected obstacles. Sometimes the mobile robot has
to avoid people or obstacles, and in these cases it
does not always run parallel to the two walls, and
in the middle of the corridor. These conditions
cause reflections on some sensors which are inter-
preted as places. A level incorporating knowledge
about the environment should fix this problem.

Finally, the global rate of recognition is 92%.
Insertions of places are 42%. Deletions are at a
very low probability level (less than 1.5%).

5. Second experiment: Situation

identification for planetary rovers:

Learning and Recognition

In a second experiment, we want to detect par-
ticular features (which we call situations) when
an outdoor teleoperated robot is exploring an un-
known environment.

This experiment has three main differences with
the previous one:

1. the robot is an outdoor robot;

2. the sensors used as the observation are of a
different type than in the indoor experiment;

3. we performed multiple learning and recogni-
tion scenarios using different set of sensors.
These experiments have been done to test
the robustness of the detection if some sen-
sors break down.

5.1 Marsokhod rover

Figure 9: The Marsokhod rover

The rover used in this experiment is a Mar-
sokhod rover (see figure 9), a medium-sized plan-
etary rover originally developed for the Russian
Mars exploration program; in the NASA Marsokhod,
the instruments and electronics have been changed
from the original. The rover has six wheels, in-
dependently driven,2 with three chassis segments
that articulate independently. It is configured with
imaging cameras, a spectrometer, and an arm.
The Marsokhod platform has been demonstrated
at field tests from 1993–99 in Russia, Hawaii, and
deserts of Arizona and California; the field tests
were designed to study user interface issues, sci-
ence instrument selection, and autonomy technolo-
gies.

2. For the experiments, the right rear wheel had a broken
gear, so it rolled passively.
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The Marsokhod is controlled either through se-
quences or direct tele-operation. In either case
the rover is sent discrete commands that describe
motion in terms of translation and rotation rate
and total time/distance. The Marsokhod is instru-
mented with sensors that measure body, arm, and
pan/tilt geometry, wheel odometry and currents,
and battery currents. The sensors that are used in
this paper are roll (angle from vertical in direction
perpendicular to travel), pitch (angle from vertical
in direction of travel), and motor currents in each
of the 6 wheels.

The experiments in this paper were performed
in an outdoor “sandbox,” which is a gravel and
sand area about 20m x 20m, with assorted rocks
and some topography. This space is used to per-
form small-scale tests in a reasonable approxima-
tion of a planetary (Martian) environment. We
distinguish between the small (less than approx.
15cm high) and large rocks (greater than approx.
15cm high). We also distinguish between the one
large hill (approx. 1m high) and the three small
hills (0.3-0.5m high).

5.2 Specifics of HMM2 application to
outdoor situation identification

Here we discuss the specific issues arising from ap-
plying HMM2s to the problem of outdoor situation
identification, along with our solutions to those is-
sues. The numbering corresponds to the number-
ing of the steps in section 3.

5.2.1 The set of situations

Currently, we model six distinct situations that
are representative of a typical outdoor exploration
environment: when the robot is climbing a small
rock on its left (resp. right) side, a big rock on its
left side,3 a small (resp. big) hill, and a default
situation of level ground.

This set of items is considered to be a complete
description of what the mobile robot can see dur-
ing its runs. All other unforeseen situations, like
flat rocks or holes, are treated as noise.

One possible application of this technique would
be to identify internal faults of the rover (e.g., bro-
ken encoders, stuck wheels). This would require
instrumenting the rover to cause faults on com-
mand, which is not currently possible on the Mar-
sokhod. Instead, the situations used in this exper-
iment were chosen to illustrate the possibility of
using a limited sensor suite to identify situations,
and in fact some sensors were not used (such as

3. The situation of a big rock on the right side was
not considered because of the non-functional right-side
wheel.

joint angles) so that the problem would become
more challenging.

As Hidden Markov Models have the ability to
model signals whose properties change with time,
we have to choose a set of sensors (as the obser-
vation) that have noticeable variations when the
Marsokhod is crossing a rock or a hill. From the
sensors described in section 5.1, we identified eight
such sensors: roll, pitch, and the six wheel cur-
rents. We define coarse rules to identify each sit-
uation (used by humans for segmentation and la-
beling the corpus for training and evaluation):

• When the robot crosses a small (resp. big)
rock on its left, we notice a distinct sensor
pattern. In all cases, the roll sensor shows a
small (resp. big) increase when climbing the
rock, then a small (resp. big), sudden de-
crease when descending from the rock. These
two variations usually appear sequentially on
the front, middle, and rear left wheels. The
pitch sensor always shows a small (resp. big)
increase, then a small (resp. big), sudden
decrease, and finally a small (resp. big) in-
crease. There is little variation on the right
wheels.

• When the robot crosses a small rock on its
right side, we observe variations symmetric
to the case of a small rock on the left side.

• When the robot crosses a small (resp. big)
hill, the pitch sensor usually shows a small
(resp. big) increase, then a small (resp. big)
decrease, and finally a small (resp. big) in-
crease. There is not always variation in the
roll sensor. However, there is a gradual, small
(resp. big) increase followed by a gradual,
small (resp. big) decrease on all (or almost
all) the six wheel current sensors.

5.2.2 The model to represent each

situation

Figure 10: Topology of states used for each model
of situation

In the formalism described in section 2, each
situation to be recognized is modeled by a HMM2
whose topology is depicted in figure 10. This topol-
ogy is well suited for the type of recognition we
want to perform. In this experiment, each model
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has five states to model the successive events char-
acterizing a particular situation. This choice has
been experimentally shown to give the best rate of
recognition.

5.2.3 Corpus collecting and labeling

We built six corpora to train a model for each sit-
uation. For this, our mobile robot made approxi-
mately fifty runs in the sandbox. For each run, the
robot received one discrete translation command
ranging from three meters to twenty meters. Ro-
tation motions are not part of the corpus. Each
run contains different situations, but each run is
unique (i.e., the area traversed and the sequence
of situations during the run is different each time).
A run contains not only one situation but all the
situations seen while running. For each run, we
noted the situations seen during the run, for later
segmentation and labeling purposes.

The rules defined to characterize a situation
are used to segment and label each run. An exam-
ple of segmentation and labeling is given in fig-
ure 11. The sensors are in the following order
(from the top): roll, pitch, the three left wheel
currents, and the three right wheel currents. A
vertical line marks the beginning or the end of a
situation. The default situation alternates with
the other situations. The sequence of situations
in the figure is the following (as labeled in the fig-
ure): small rock on the left side, default situation,
big rock on the right side, default situation, small
hill, default situation, and big hill.

5.2.4 Model training

In this experiment, we do not need to interpolate
the observations done by the robot, because it al-
ways moves at approximately the same translation
speed. As we want to compare different possibili-
ties and test if the detection is usable even if some
sensors break down, we train a separate model for
each of three sets of input data. The observations
used as input of each model to train consist of:

• eight coefficients: the first derivative (i.e.,
the variation) of the values of the eight sen-
sors used for segmentation.

• six coefficients: the first derivative (i.e., the
variation) of the values of the six wheel cur-
rent sensors.

• two coefficients: the first derivative (i.e., the
variation) of the values of the roll and the
pitch sensors.

Each training uses segmented data, and each model
is trained independently with its corpus.

There are two reasons for training three differ-
ent models. First is to check whether the eight
sensors used for the segmentation are necessary to
learn and recognize situations, or whether a sub-
set is sufficient. Second, we want to be able to
recognize situations even if one or more sensors do
not work; e.g., if some wheel sensors do not work
it will affect (during recognition) the models using
the six wheel current sensors or the eight sensors
but not the models using just the roll and pitch
sensors.

5.2.5 The recognition phase

The goal of recognition is to identify the five situ-
ations (small rock on the left or right; big rock on
the left; small or big hill) while the robot moves
in the sandbox. The default situation model con-
nects two items much like silence between two words
in speech recognition.

During the recognition phase, the robot was
operated as for corpus collecting. We took approx-
imately 40 acquisitions and used the six trained
models to perform the recognition. We perform
three independent recognitions, corresponding to
the three learning situations.

5.2.6 Results and discussion

In each confusion matrix, the acronyms used are:
BL = big rock on the left, SL = small rock on the
left, SR = small rock on the right, BH = big hill,
and SH = small hill. The results of the three in-
dependent experiments are shown and analyzed in
the three next subsections. In the fourth subsec-
tion, we present a global analysis of the results.

BL SL SR BH SH Ins
BL 19 3 1 - - 9
SL 3 25 - - - 12
SR 1 2 31 - 1 26
BH 1 - - 20 2 15
SH - - - 1 23 28
Del 1 1 - - - -

Total 25 31 32 21 26 90
Reco 76% 81% 97% 95% 88%

Table 3: Confusion matrix of situations, eight sen-
sors.

Experiment with eight sensors For eight sen-
sors, as each situation can be easily distinguished
from the others, the global rate of recognition is
excellent (87%) (see tables 3, 4). Small (resp. big)
rocks on the left are sometimes confused with big
(resp. small) rocks on the left; the signal provided
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big rock
on the right sideon the left side

small rock small hill big hill

Figure 11: Segmentation and labeling of a run.

number %
Seen 135 100

Recognized 118 87
Substituted 15 11

Deleted 2 2
Inserted 90 67

Table 4: Global rate of recognition, eight sensors.

by the sensors does not contain the information
necessary to discriminate these two situations. In
fact, the variations on the sensors are nearly the
same. The only criterion which distinguishes these
two models is the amplitude of the variation on
the three left wheels, and visibly it is not suffi-
cient. The small rocks on the right are perfectly
recognized. This situation has a very distinctive
pattern, and only with difficulty can it be confused
with another. The fact that we could not learn and
recognize a situation where the robot is crossing a
big rock on its right avoids any confusion.

The major problem is the high rate of inser-

tion. This rate is due to the noise of the sensors
being recognized as a situation. This is especially
the case for situations characterized only by small
variations on a part (or all) of the set of sensors,
in particular the crossing of a small hill.

BL SL SR BH SH Ins
BL 17 5 1 - - 10
SL 4 24 2 - 1 19
SR 3 - 29 - 1 44
BH - 1 - 20 1 19
SH 1 - - 1 23 32
Del - 1 - - - -

Total 25 31 32 21 26 124
Reco 68% 77% 91% 95% 88%

Table 5: Confusion matrix of situations, six sen-
sors.

Experiment with six sensors With six sen-
sors, the global rate of recognition is still very good
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number %
Seen 135 100

Recognized 113 84
Substituted 21 15

Deleted 1 1
Inserted 124 92

Table 6: Global rate of recognition, six sensors.

(see tables 5, 6). There is only four more percent
of substitutions due to the loss of information used
to distinguish situations. On the other hand, the
rate of insertion increased by 25%. With only the
six wheel current sensors, nearly one recognition
out of two is an insertion. The six wheel current
sensors are very noisy, and the roll and pitch sen-
sors are useful to distinguish between simple noise
and real situations. This explains the increase of
the insertions.

BL SL SR BH SH Ins
BL 15 4 - 6 1 1
SL 2 17 1 - 9 15
SR 2 1 27 1 5 8
BH 5 - - 14 2 6
SH - 7 4 - 9 12
Del 1 2 - - - -

Total 25 31 32 21 26 42
Reco 60% 55% 84% 67% 35%

Table 7: Confusion matrix of situations, two sen-
sors.

number %
Seen 135 100

Recognized 82 61
Substituted 50 37

Deleted 3 2
Inserted 42 31

Table 8: Global rate of recognition, two sensors.

Experiment with two sensors With only the
roll and pitch sensors, the global rate of recogni-
tion remains good, and the rate of insertions sig-
nificantly decreases (see tables 7, 8). In fact, these
two sensors are not too noisy, and when there is a
variation on these sensors it generally corresponds
to a real situation. But these two sensors do not
provide sufficient information to distinguish be-
tween situations, which is why there is a high rate
of substitution.

Global analysis From the results of experiments,
we can draw some conclusions. The best way to

perform recognition is with eight sensors: the rate
of recognition is a little bit better than for six sen-
sors and the rate of insertion is very smaller. This
can be explained by the fact that the six wheels
current sensors are very noisy, and the use of the
roll and pitch sensors, which are not too noisy,
can distinguish between a situation to recognize
and a simple noise on the current wheel sensors.
Nonetheless, the models learned in the two last
experiments could be useful in long exploration
where sensors can fail, since they provide usable,
albeit less reliable, recognition.

This experiment can be extended to fault de-
tection, for example broken wheels or sensor fail-
ure. In fact, we can build one model of a particular
situation where all sensors work and several mod-
els of this situation where one or several sensors
are broken: for example a model of a big rock on
the right side and a model of a big rock on the
right when the front left wheel is broken. Using
these models, we can recognize situations associ-
ated with the state of the sensors of the robot, and
detect failing of sensors or motors.

6. Related work

A variety of approaches to state estimation and
fault diagnosis have been proposed in the control
systems, artificial intelligence, and robotics litera-
ture.

Techniques for state estimation of continuous
values, such as Kalman filters, can track multiple
possible hypotheses (Rauch, 1994; Willsky, 1976).
However, they must be given an a priori model of
each possible state. One of the strengths of the
approach presented in this paper is its ability to
construct models from training data and then use
them for state identification.

Qualitative model-based diagnosis techniques
(de Kleer & Williams, 1987; Muscettola, Nayak,
Pell, & Williams, 1998) consider a snapshot of the
system rather than its history. In addition, the
system state is assumed to be consistent with a
propositional description of one of a set of possible
states. The presence of noisy data and temporal
patterns negates these assumptions.

Hidden Markov Models have been applied to
fault detection in continuous processes (Smyth,
1994); the model structure is supplied, with only
the transition probabilities learned from data. In
the approach in this paper, the HMM learns with-
out prior knowledge of the models.

Markov models have been widely used in mo-
bile robotics. Thrun (Thrun, 2001) reviews tech-
niques based on Markov models for three main
problems in mobile robotics: localization, map build-
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ing and control. In these techniques, a Markov
model represents the environment, and a specific
algorithm is used to solve the problem. Our ap-
proach is different in a number of ways. We ad-
dress a different problem: the interpretation of
temporal sequences of mobile-robot sensor data to
automatically detect features. Moreover, we use
very little a priori knowledge: in particular, the
topology of the model reflecting the human’s un-
derstanding about sequences of sensor data char-
acterizing a particular feature. All the other pa-
rameters of the model are estimated by learning.
On the contrary, the techniques presented in (Thrun,
2001) need some preliminary knowledge: a map of
the environment, a sensor model and an actuator
model. Usually, there is no learning component in
these techniques.

The most well-known work including a learn-
ing component is by Koenig and Simmons (Koenig
& Simmons, 1996). They start with an a priori
topological map that is translated into a Markov
model before any navigation takes place. An ex-
tension of the Baum-Welch algorithm reestimates
the Markov model representing the environment,
the sensor and actuator models. There are a num-
ber of differences with this work:

• They use a Markov model to model the en-
vironment, whereas we use a Markov model
to model the sequence of events composing
a particular feature;

• They need some a priori knowledge: a topo-
logical map of the environment, and sensor
and actuator models;

• They make hypotheses on the value of some
parameters to reduce the number of param-
eters to estimate; we do not make any such
hypothesis;

• The observations they use are discrete, sym-
bolic and unidimensional. There are obtained
by an abstraction (based on some hypothe-
sis) of the raw data of several sensors. Dis-
crete symbolic and unidimensional observa-
tions are the result of our method. They
are obtained by interpretation of a sequence
of raw data from several sensor without any
prior hypothesis.

Our work can be seen as a preliminary step for all
of the work presented in (Thrun, 2001). We have
previously built a sensor model based on the recog-
nition rates reported in this article; the model
allowed robust localization in dynamic environ-
ments (Aycard, Laroche, & Charpillet, 1998).

Hidden Markov Models have been used for in-
terpretation of temporal sequences in robotics (Han-

naford & Lee, 1991; J. Yang, 1994). The approach
presented in this paper is more robust for the fol-
lowing reasons:

• Yang, Xu, and Chen (J. Yang, 1994) make
some restrictions and hypotheses on the ob-
servations they used: each component of the
observation is discretized, since he uses a
HMM with discrete observations. Moreover,
each component of the observation is pre-
sumed independent from the other. In our
work, the probability of an observation given
a particular state is represented by a mix-
ture of Gaussians. Thus we are able to deal
with observations constituted by noisy con-
tinuous data of different types4 of sensors
without any a priori assumption about the
independence of these data and without any
discretization of the data;

• The particular approach we use is the second-
order HMM (HMM2). HMM2s have been
shown to be effective models to capture tem-
poral variations in speech (Mari et al., 1997),
in many cases surpassing first-order HMMs
when the trajectory in the state space has to
be accounted for. For instance in the first ex-
periment, due to the duration-modeling ca-
pabilities of HMM2, the Viterbi algorithm
was able to distinguish an open door from a
T-intersection.

7. Conclusion and future directions

In this paper, we have presented a new method to
learn to automatically detect features for mobile
robots using second-order Hidden Markov Mod-
els. This method gives very good results, and has
a good robustness to noise, verifying that HMM2s
are well suited for this task. We showed that the
process of recognition is robust to dynamic envi-
ronment. Features are detected even if they are
quite different from learned features: for instance,
an open door is recognized even if it is completely
or partially opened. Moreover, features are de-
tected even if they are seen from a different point
of view. For instance, in contrast to Kortenkamp
et al (Kortenkamp et al., 1992), features are de-
tected even if the robot is not at a given distance
from a wall and doesn’t move in a direction per-
fectly parallel to the two walls constituting the
corridor. Finally, our approach has been success-
fully tested in an outdoor environment.

The results can be improved by adding more
models to decrease the intra-class variability (es-

4. In the second experiment, the observation is composed
of three types of sensors.
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pecially for open doors across from each other)
and to take into account contextual information.
Another criterion that could improve the results
is to choose a different number of states for each
feature.

Moreover, the method takes advantage of an-
alytical methods and pattern classification meth-
ods. First, we analyze the sensor data and de-
fine a model to represent the patterns in the data.
Secondly, the learning algorithm automatically ad-
justs the parameters of the model using a learning
corpus. Moreover, the learning algorithm was able
to extract more complex characteristics of a fea-
ture than simple variations of sensor data between
two consecutive moments. For instance:

• The length of a sequence5 of observations
was taken into account in the first experi-
ment to detect the difference between a T-
intersection and an open door;

• In the first experiment, the gradual decrease
(resp. increase) of the value of sensors lo-
cated in front (resp. in the rear) of the robot
during time has been used to characterize a
start (resp. an end) of corridor;

• The algorithm can find correlation between
data from sensors of different types to char-
acterize a feature. For example, the corre-
lation of the roll, pitch and wheel current
sensors is used to characterize a situation in
the second experiment.

However, our method has two drawbacks:

• As in Kortenkamp et al (Kortenkamp et al.,
1992), a feature can only be recognized when
it has been completely visited. For example,
the robot would have to go back to turn at
a T-intersection after it had recognized it.

• Moreover, using the current technique, the
list of places is known only when the run
has been completed. To detect features on-
line during navigation, we can use a vari-
ant of the Viterbi algorithm called Viterbi-
block (Kriouile, Mari, & Haton, 1990). This
algorithm is based on a local optimum com-
parison of the different probabilities com-
puted by the Viterbi algorithm during time-
warping of a shift-window of fixed length in
the signal and the different HMMs. This al-
gorithm can detect features a few meters af-
ter they have been seen. We have used this
algorithm to perform localization in dynamic
environment (Aycard et al., 1998).

5. the number of observations composing the sequence
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