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Abstract

In this paper, we propose a robust method based
on Hidden Markov Models to interpret temporal se-
quences of sensor data from mobile robots to auto-
matically detect features.
Hidden Markov Models have been used for a long
time in pattern recognition, especially in speech
recognition. Their main advantages over other
methods (such as neural networks) are their ability
to model noisy temporal signals of variable length.
We show in this paper that this approach is well
suited for interpretation of temporal sequences of
mobile-robot sensor data. We present two distinct
experiments and results: the first one in an indoor
environment where a mobile robot learns to detect
features like open doors or T-intersections, the sec-
ond one in an outdoor environment where a dif-
ferent mobile robot has to identify situations like
climbing a hill or crossing a rock.

1 Introduction
A mobile robot operating in a dynamic environment is pro-
vided with sensors (infrared sensors, ultrasonic sensors, tac-
tile sensors, cameras. . . ) in order to perceive its environ-
ment. Unfortunately, the numeric, noisy data furnished by
these sensors are not directly useful; they must first be inter-
preted to provide accurate and usable information about the
environment. This interpretation plays a crucial role, since it
makes it possible for the robot to detect pertinent features in
its environment and to use them for various tasks.

For instance, for a mobile robot, the automatic recognition
of features is an important issue for three main reasons: 1)
it determines the capability of a mobile robot to locate itself
in its environment [Borenstein et al., 1996]. 2) This is also
the first step in the construction of cognitive maps [Kuipers,
2000]. 3) Features can be used by a mobile robot as subgoals
for a navigation plan [Lazanas and Latombe, 1995].

In semi-autonomous or remote, teleoperated robotics, au-
tomatic detection of features is a necessary ability. In the case
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of limited and delayed communication, such as for planetary
rovers, human interaction is restricted, so features detection
can only be practically performed through on-board interpre-
tation of the sensor information. For all these reasons, fea-
tures detection has received considerable attention over the
past few years. This problem can be classified with the fol-
lowing criteria:

Natural/artificial The first criterion is the nature of the fea-
ture. The features can be artificial, that is, added to the exist-
ing environment. [Becker et al., 1995] define a set of artifi-
cial features2 located on the ceiling and use a camera to de-
tect them. Other techniques use natural features, that is, fea-
tures already existing in the environment. For instance, [Ko-
rtenkamp et al., 1992] use ultrasonic sensors to detect natural
features like open doors and T-intersections.

Using artificial features makes the process of detection and
distinction of features easier, because the features are de-
signed to be simple to detect. But this approach can be time-
consuming, because the features have to be designed and to
be positioned in the environment. Moreover, using artificial
features is impossible in unknown or remote environments.

Analytical/statistical methods Feature detection has been
addressed by different approaches such as analytical meth-
ods or pattern classification methods. In the analytical ap-
proach, the problem is studied as a reasoning process. A
knowledge based system uses rules to build a representa-
tion of features. For instance, [Kortenkamp et al., 1992] use
rules about the variation of the sonar sensors to learn differ-
ent types of features and adds visual information to distin-
guish two features of the same type. In contrast, a statistical
pattern-classification system attempts to describe the obser-
vations coming from the sensors as a random process. The
recognition process consists of the association of the signal
acquired from sensors with a model of the feature to iden-
tify. For instance, [Yamauchi, 1995] uses ultrasonic sensors
to build evidence grids [Elfes, 1989]. An evidence grid is
a grid corresponding to a discretization of the local environ-
ment of the mobile robot. In this grid, Yamauchi’s method
updates the probability of occupancy of each grid tile with

2The features are patterns composed of 3x3 squares, and each
square is colored in black or white.



several sensor data. To perform the detection, he defines an
algorithm to match two evidence grids.

These two approaches are complementary. In the analyti-
cal approach, we aim to understand the sensor data and build
a representation of these data. But as the sensor data may
be noisy, so their interpretation may not be straightforward;
moreover, overly simple descriptions of the sensor data (e.g.,
“current rising, steady, then falling”) may not directly corre-
spond to the actual data.

In the second approach, we build models that represent
the statistical properties of the data. This approach naturally
takes into account the noisy data, but it is generally difficult
to understand the correspondence between detected features
and the sensor data.

A solution that combines the two approachs could build
models corresponding to human’s understanding of the sen-
sor data, and adjust the model parameters according to the
statistical properties of the data.

Automatic/manual feature definition The set of features
to detect could be given manually or discovered automati-
cally [Thrun, 1998]. In the manual approach, the set is de-
fined by humans using the perception they have of the en-
vironment. Since high level robotic system are generally
based loosely on human perception, the integration of feature
detection in such a system is easier than for automatically-
discovered features. Moreover, in teleoperated robotics,
where humans interact with the robot, the features must corre-
spond to the high level perception of the operator to be useful.
These are the main reasons the set is almost always defined
by humans. However, properly defining the features so that
they can be recognized robustly by a robot remains a difficult
problem; this paper proposes a method for this problem. In
contrast, when features are discovered automatically, humans
must find the correspondence between features perceived by
the robot and features they perceive. The difficulty now rests
on the shoulders of the humans.

Temporally extended/instantaneous features Some
features can only be identified by considering a temporal
sequence of sensor information, not simply a snapshot,
especially with telemetric sensors. Consider for example
the detection of a feature in [Kortenkamp et al., 1992] or
the construction of an evidence grid in [Yamauchi, 1995]:
these two operations use a temporal sequence of sensor
information. In general, instantaneous (i.e., based over
a simple snapshot) detection is less robust than temporal
detection.

This paper describes an approach that combines an analyt-
ical approach for the high-level topology of the environment
with a statistical approach to feature detection. The approach
is designed to detect temporally extended features that have
been manually defined. The feature detection uses Hidden
Markov Models (HMMs). HMMs are a particular type of
probabilistic automata. The topology of these automata cor-
responds to a human’s understanding of sequences of sensor
data characterizing a particular feature in the robot’s environ-

ment. We use HMMs for pattern recognition. From a set of
training data produced by its sensors and collected at a feature
that it has to identify — a door, a rock, . . . — the robot ad-
justs the parameters of the corresponding model to take into
account the statistical properties of the sequences of sensor
data. At recognition time, the robot chooses the model whose
probability given the sensor data — the a posteriori proba-
bility — is maximized. We combine analytical methods to
define the topology of the automata with statistical pattern-
classification methods to adjust the parameters of the model.

The HMM approach is a flexible method for handling the
large variability of complex temporal signals; for example, it
is a standard method for speech recognition [Rabiner, 1989].
In contrast to dynamic time warping, where heuristic training
methods for estimating templates are used, stochastic mod-
eling allows probabilistic and automatic training for estimat-
ing models. The particular approach we use is the second-
order HMM (HMM2), which have been used in speech recog-
nition [Mari et al., 1997], often out-performing first-order
HMMs.

This paper is organized as follow. We first define the
HMM2 and describe the algorithms used for training and
recognition. Section 3 is the description of our method for
feature detection combining HMM2s with a grammar-based
analytical method describing the environment. In section 4,
we present an experiment of our method to detect natural fea-
tures like open doors or T-intersections in an indoor structured
environment for an autonomous mobile robot. A second ex-
periment on a semi-autonomous mobile robot in an outdoor
environment is described in section 5. Then we report related
work in section 6. We give some conclusions and perspec-
tives in section 7.

2 Second-order Hidden Markov Model
In this section, we briefly present the HMM2 and the algo-
rithms used for learning and recognition. A very complete tu-
torial on HMMs and their applications to speech can be found
in [Rabiner, 1989].

2.1 Definition
In a HMM2, the underlying state sequence is a second-order
Markov chain. Therefore, the probability of a transition be-
tween two states at time
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2.2 The Viterbi Algorithm
Recognition of a given sequence of observations is performed
by the Viterbi algorithm [Forney, 1973], which determines
the most likely state sequence given an observation sequence.
The Viterbi algorithm uses dynamic programming to compute
the best partial state sequence to time

�
for all states. The

most likely state sequence !',�1$ADACAD1=! � is obtained by keeping
track of back pointers for each computation of which previous
transition leads to the maximal partial path probability.

2.3 The Baum-Welch Algorithm
Model learning is performed using the maximum likelihood
estimation criterion that determines the best model param-
eters according to the corpus of items. It must be noted that
this criterion does not try to separate models like a neural net-
work, but only tries to increase the probability that a model
generates its corpus independently of what the other mod-
els can do. Intuitively, this algorithm counts the number of
occurrences of each transition between the states in the train-
ing corpus. Each count is weighted by the probability of the
alignment (state, observation).

3 Application to mobile robotics
The method presented in this paper performs feature detec-
tion by combining HMM2s with a grammar-based descrip-
tion of the environment. To apply second order Hidden
Markov Models to automatically detect features, we must ac-
complish a number of steps. In this section we review these
steps and our approach for treating the issues arising in each
of them. In the following sections we expand further on the
specifics for each experiment.

The steps necessary to apply HMM2s to detect features
are the following:

1. Defining the number of distinct features to identify and
their characterization.
As Hidden Markov Models have the ability to model sig-
nals whose properties change with time, we choose a
set of sensors (as the observations) that have noticeable
variations when the mobile robot is observing a particu-
lar feature. The features are chosen for the fact that they
are repeatable and human-observable (for the purposes
of labeling and validation). So, we define coarse rules to

1An observation is defined as the measure of one or several sen-
sors at a given time.

Figure 1: Topology of states used for each model of feature

identify each feature, based on the variation of the sen-
sors constituting the observation to identify each feature.
These rules are for human use, for segmentation and la-
beling of the data stream of the training corpus. The set
of chosen features is a complete description of what the
mobile robot can see during its run. All other unforeseen
features are treated as noise.

2. Finding the most appropriate model to represent a spe-
cific feature.
Designing the right model in pattern recognition is
known as the model selection problem and is still an
open area of research. Based on our experience in
speech recognition, we used the well known left-right
model (figure 1), which efficiently performs temporal
segmentation of the data. Recognition begins in the left-
most state, and each time an event characterizing the
feature is recognized it advances to the next state to the
right. When the rightmost state has been reached, the
recognition of the feature is complete.
The number of states is generally chosen as a monotone
function of the length of the pattern to be identified ac-
cording to the state duration probabilities.
The state duration in a HMM2 is governed by two pa-
rameters: the probability of entering a state only once,
and the probability of visiting a state at least twice, with
the latter modeled as a geometric decay. This distribu-
tion fits a probability density of durations [Crystal and
House, 1988] better than the classical exponential distri-
bution of an HMM1. This property is of great interest in
speech recognition when a HMM2 models a phoneme in
which a state captures only 1 or 2 frames.
This choice gives generally high rate of recognition.
Sometimes, adding or suppressing one or two states has
been experimentally observed to increase the rate of
recognition. The number of states is generally chosen
to be the same for all the models.

3. Collecting and labeling a corpus of sequence of obser-
vations during several runs to perform learning.
The corpus is used to adjust the parameters of the model
to take into account the statistical properties of the se-
quences of sensor data. Typically, the corpus consists
of a set of sequences of features collected during sev-
eral runs of the mobile robot. So, these runs should be
as representative as possible of the set of situations in
which features could be detected. The construction of
the corpus is time-consuming, but is crucial to effective
learning.
A model is trained with sequences of sensor data corre-
sponding to the particular feature it represents. Since a



run is composed of a sequence of features (and not only
one feature), we need to segment and label each run. To
perform this operation, we use the previously defined
coarse rules to identify each feature and extract the rele-
vant sequences of data. Finally, we group the segments
of the runs corresponding to the same feature to form a
corpus to train the model of that feature.

4. Defining a way to be able to detect all the features seen
during a run of the robot.

For this, the robot’s environment is described by means
of a grammar that restricts the set of possible sequences
of models. Using this grammar, all the HMM2s are
merged in a bigger HMM on which the Viterbi algorithm
is used. This grammar is a regular expression describing
the legal sequences of HMM2s; it is used to know the
possible ways of merging the HMM2s and their likeli-
hood. More formally, this grammar represents all pos-
sible Markov chains corresponding to the hidden part of
the merged models. In these chains, nodes correspond to
HMM2s associated with a particular feature. Edges be-
tween two HMM2s correspond to a merge between the
last state of one HMM2 and the first state of the other
HMM2. The probability associated with each edge rep-
resents the likehood of the merge.

Then, the most likely sequence of states, as determined
by the Viterbi algorithm, determines the ordered list of
features that the robot saw during its run. It must be
noted that the list of models is known only when the run
is completed. We make the hypothesis that two or more
of the features cannot overlap. The use of a grammar
has another important advantage. It allows the elimi-
nation of some sequences that will never happen in the
environment. From a computational point of view, the
grammar will avoid some useless calculations.

The grammar can be given apriori or learned. To learn
the grammar, we use the former models and estimate
them on unsegmented data like in the recognition phase.
Specifically, we merge all the models seen by the robot
during a complete run into a larger model corresponding
to the sequence of observed items and train the resulting
model with the unsegmented data.

5. Evaluating the rate of recognition.

For this, we define a test corpus composed of several
runs. For each run, a human compares the sequence of
features composing the run, using knowledge of the en-
vironment, with what has been detected by the Viterbi
algorithm. A feature is recognized if it is detected by the
corresponding model close to its real geometric position.
A few types of errors can occur:

Insertion: the robot has seen a non-existing feature
(false positive). This corresponds to an over-
segmentation in the recognition process. Insertions
are currently considered when the width of the in-
serted feature is more than 80 centimeters;

Deletion: the robot has missed the feature (false nega-
tive);

turret

base

ultrasonic
sensors

infrared

tactile

sensors

sensors

Figure 2: The Nomad200
robot

Figure 3: The Marsokhod
rover

Substitution: the robot has confused the feature with
another.

In the experiments that we have run, the results are sum-
marized first as confusion matrices, where an element

X � � is the number of times the model N has been recog-
nized when the right answer was feature

L
, and second

with the global rate of recognition, insertion, substitu-
tion and deletion.

In the two following sections, we present two experiments
where we used second-order Hidden Markov Models to de-
tect features using sequence of mobile-robot sensor data. In
each section, after a brief description of the problem and the
mobile robot used, we explain the specific solution to each of
the issues introduced in this section.

4 First experiment: Learning and recognition
of features in an indoor structured
environment

In this first experiment, we used second order Hidden Markov
Models to learn and to recognize indoor features such as T-
intersections and open doors given sequences of data from
ultrasonic sensors of an autonomous mobile robot. These
features are generally called places. A complete descrip-
tion of this experiment can be found in [Aycard et al., 1997a;
1998b].

4.1 The Nomad200 mobile robot
In this experiment, we used a Nomad200 (figure 2). It is com-
posed of a base and a turret. The base consists of 3 wheels and
tactile sensors. The turret is an uniform 16-sided polygon. On
each side, there is an infrared and an ultrasonic sensor. The
turret can rotate independently of the base. The Nomad200
senses its environment using 16 ultrasonic sensors. The an-
gle between two ultrasonic sensors is 22.5 degrees, and each
ultrasonic sensor has a beam width of approximately 23.6 de-
grees. By examining all 16 sensors, we can obtain a 360 de-
gree panoramic view fairly rapidly. The ultrasonic sensors
give range information from 17 to 255 inches. But the qual-
ity of the range information greatly depends on the surface of
reflection and the angle of incidence between the ultrasonic
sensor and the object.
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Figure 4: The 10 places to recognize

4.2 Specifics of HMM2 application to indoor place
identification

Here we discuss the specific issues arising from applying
HMM2s to the problem of indoor place identification, along
with our solutions to those issues. The numbering corre-
sponds to the numbering of the steps in section 3.

The set of places
Currently, we model ten distinctive places that are represen-
tative of an office environment: a corridor, a T-intersection on
the right (resp. left) of the corridor, an open door on the right
(resp. left) of the corridor, a “starting” corner on the right
(resp. left) when the robot moves away from the corner, an
“ending” corner on the right (resp. left) side of the corridor
when the robot arrives at this corner, two open doors across
from each other (figure 4). This set of items is a complete
description of what the mobile robot can see during its run.
All other unforeseen objects, like people wandering along in
a corridor, are treated as noise.

To characterize each feature, we define coarse rules ob-
serving variations on sensors on one side of the robot. These
rules will be used for segmentation and labeling the corpus
for training and evaluation.

The model to represent each place
In the formalism described in section 2, each place to be rec-
ognized is modeled by an HMM2 whose topology is depicted
in figure 1.

Corpus collecting and labeling
We built a corpus to train a model for each of the 10 places.
For this, our mobile robot made 50 passes (back and forth) in
a very long corridor (approximately 30 meters). This corridor
contains two corners (one at the start of the corridor and one at
the end), a T-intersection and some open doors (at least four,
and not always the same). The robot ran with a simple navi-
gation algorithm [Aycard et al., 1997b] to stay in the middle
of the corridor in a direction parallel to the two walls con-
stituting the corridor. While running, the robot stored all of
its ultrasonic sensor measures. The acquisitions were done in
real conditions with people wandering in the lab, doors com-
pletely or partially opened and static obstacles like shelves.

A pass in the corridor contains not only one place but all
the places seen while running in the corridor. To learn a par-
ticular place, we must manually segment and label passes in
distinctive places. The goal of the segmentation and the label-
ing is to identify the sequence of places the robot saw during
a given pass. To perform this task, we use the rules defined to
characterize a place. We segment and label each run.

Finally, we group the segments from each pass correspond-
ing to the same place.

The recognition phase
The goal of the recognition process is to identify the 9 places
in the corridor. We use a tenth model for the corridor because
the Viterbi algorithm needs to map each frame to a model dur-
ing recognition. The corridor model connects 2 items much
like a silence between 2 words in speech recognition. During
this experiment, the robot uses its own reactive algorithm to
navigate in the corridor and must decide which places have
been encountered during the run. We took 40 acquisitions
and used the ten models trained to perform the recognition.
The recognition is independently processed on each side.

4.3 Results and discussion
Results are given in table 1 and 2.

We notice that the rate of recognition are very high, and
the rate of confusion are very low. This is due to the fact that
each place has a very particular pattern, and so it is very dif-
ficult to confuse it with an other. In fact, HMM2 used hidden
characteristics (i.e, characteristics not explicitly given during
the segmentation and the labelization of places) to perform
discrimination between places. In particular, a place is char-
acterized by variations on sensors on one side of the robot,
but too with variations on sensors located on the rear or the
front of the robot. Observations of sensors situated on the
front of the robot are very different when the robot is in the
middle of the corridor than at the end of the corridor. So, the
models of start of corridor (resp. end of corridor) could be
recognized only when observations of front and rear sensors
correspond to the start of a corridor (resp. the end of a corri-
dor), which will rarely occur when the robot is in the middle
of the corridor. So, it is nearly impossible to have insertions
of the start of a corridor (resp. end of corridor) in the middle
of the corridor.

HMM2 have been able to learn this type of hidden char-
acteristics and to use them to perform discrimination during
recognition.

But, we see that T-intersection and open doors have very
similar characteristics using sensor information, and there is
nearly no confusion between these two places. An other char-
acteristic has been learned by the HMM2 to perform the dis-
crimination between these two places. The width of open
doors is different from the width of intersections, the dis-
crimination between these two types of places is improved
because of the duration modeling capabilities of the HMM2,
as presented above and as shown by [Mari et al., 1997].

The rate of recognition of two open doors across from each
other is mediocre (50%). There exists a great variety of doors
that can overlap and we only define one model that represents
all these situations. So this model is a very general model



right right right right left left left left door Ins.
start end inter. door start end inter. door door

right start 7 0 0 0 0 0 0 0 0 0
right end 0 7 0 0 0 1 0 1 0 0

right inter. 0 0 7 0 0 0 0 0 0 0
right door 0 0 0 42 0 0 0 1 1 25
left start 0 0 0 0 8 0 0 0 0 0
left end 0 0 0 0 0 6 0 0 0 0

left inter. 0 0 0 0 0 0 8 0 0 0
left door 1 0 0 4 0 0 1 43 1 34

door door 0 0 1 0 0 0 0 1 2 1
deletions 0 1 0 0 0 0 0 0 0 0

Total 8 8 8 46 8 7 9 46 4 60
% reco. 88 88 88 91 100 86 89 93 50

Table 1: Confusion matrix of places

number %
Seen 144 100

Recognized 130 90
Substituted 11 9

Deleted 2 1
Inserted 60 42

Table 2: Global rate of recognition

of two doors across from each other. Defining more specific
models of this place would lead to increase the associate rate
of recognition.

The major problem is the high rate of insertion. Most of
the insertions are due to the inaccuracy of the navigation al-
gorithm and to the unexpected obstacles. Sometimes the mo-
bile robot has to avoid people or obstacles, and in these cases
it does not always run parallel to the two walls, and in the
middle of the corridor. These conditions cause reflections
on some sensors which are interpreted as places. A level in-
corporating knowledge about the environment should fix this
problem.

Finally, the global rate of recognition is 92%. Insertions of
places are 42%. Deletions are at a very low probability level
(less than 1.5%).

5 Second experiment: Situation identification
for planetary rovers: Learning and
Recognition

In a second experiment, we want to detect particular features
(which we call situations) when an outdoor teleoperated robot
is exploring an unknown environment. A complete descrip-
tion of this experiment can be found in [Aycard and Washing-
ton, 2000].

This experiment has main differences with the previous
one:

1. the robot is an outdoor robot;

2. the sensors used as the observation are of a different type
than in the indoor experiment;

5.1 Marsokhod rover
The rover used in this experiment is a Marsokhod rover
(see figure 3), a medium-sized planetary rover originally de-
veloped for the Russian Mars exploration program; in the
NASA Marsokhod, the instruments and electronics have been
changed from the original. The rover has six wheels, inde-
pendently driven,2 with three chassis segments that articulate

2For the experiments, the right rear wheel had a broken gear, so
it rolled passively.

independently.
The Marsokhod is controlled either through sequences or

direct tele-operation. In either case the rover is sent dis-
crete commands that describe motion in terms of translation
and rotation rate and total time/distance. The Marsokhod
is instrumented with sensors that measure body, arm, and
pan/tilt geometry, wheel odometry and currents, and battery
currents. The sensors that are used in this paper are roll (angle
from vertical in direction perpendicular to travel), pitch (an-
gle from vertical in direction of travel), and motor currents in
each of the 6 wheels.

The experiments in this paper were performed in an out-
door “sandbox,” which is a gravel and sand area about 20m
x 20m, with assorted rocks and some topography. This space
is used to perform small-scale tests in a reasonable approxi-
mation of a planetary (Martian) environment. We distinguish
between the small (less than approx. 15cm high) and large
rocks (greater than approx. 15cm high). We also distinguish
between the one large hill (approx. 1m high) and the three
small hills (0.3-0.5m high).

5.2 Specifics of HMM2 application to outdoor
situation identification

Here we discuss the specific issues arising from applying
HMM2s to the problem of outdoor situation identification,
along with our solutions to those issues [Aycard and Wash-
ington, 2000]. The numbering corresponds to the numbering
of the steps in section 3.

The set of situations
Currently, we model six distinct situations that are represen-
tative of a typical outdoor exploration environment: when the
robot is climbing a small rock on its left (resp. right) side, a
big rock on its left side,3 a small (resp. big) hill, and a default
situation of level ground.

This set of items is considered to be a complete description
of what the mobile robot can see during its runs. All other

3The situation of a big rock on the right side was not considered
because of the non-functional right-side wheel.



BL SL SR BH SH Ins
BL 19 3 1 - - 9
SL 3 25 - - - 12
SR 1 2 31 - 1 26
BH 1 - - 20 2 15
SH - - - 1 23 28
Del 1 1 - - - -

Total 25 31 32 21 26 90
Reco 76% 81% 97% 95% 88%

Table 3: Confusion matrix of situations

unforeseen situations, like flat rocks or holes, are treated as
noise.

From the sensors described in section 5.1, we chose eight
sensors: roll, pitch, and the six wheel currents, to define
coarse rules to identify each situation (used by humans for
segmentation and labeling the corpus for training and evalua-
tion).

The model to represent each situation
In the formalism described in section 2, each situation to be
recognized is modeled by a HMM2. This topology is well
suited for the type of recognition we want to perform. In this
experiment, each model has five states to model the succes-
sive events characterizing a particular situation. This choice
has been experimentally shown to give the best rate of recog-
nition.

Corpus collecting and labeling
We built six corpora to train a model for each situation. For
this, our mobile robot made approximately fifty runs in the
sandbox. For each run, the robot received one discrete trans-
lation command ranging from three meters to twenty meters.
Rotation motions are not part of the corpus. Each run con-
tains different situations, but each run is unique (i.e., the area
traversed and the sequence of situations during the run is dif-
ferent each time). A run contains not only one situation but
all the situations seen while running. For each run, we noted
the situations seen during the run, for later segmentation and
labeling purposes.

The recognition phase
The goal of recognition is to identify the five situations (small
rock on the left or right; big rock on the left; small or big
hill) while the robot moves in the sandbox. The default sit-
uation model connects two items much like silence between
two words in speech recognition.

During the recognition phase, the robot was operated as
for corpus collecting. We took approximately 40 acquisitions
and used the six trained models to perform the recognition.

Results and discussion
In the confusion matrix(table 3), the acronyms used are:
BL = big rock on the left, SL = small rock on the left,
SR = small rock on the right, BH = big hill, and SH = small
hill.

As each situation can be easily distinguished from the oth-
ers, the global rate of recognition is excellent (87%) (see ta-
bles 3, 4). Small (resp. big) rocks on the left are sometimes

# %
Seen 135 100

Recognized 118 87
Substituted 15 11

Omitted 2 2
Inserted 90 67

Table 4: Global rate of recognition

confused with big (resp. small) rocks on the left; the sig-
nal provided by the sensors does not contain the information
necessary to discriminate these two models. In fact, the vari-
ations on the sensors are nearly the same. The only criterion
which distinguishes these two models is the amplitude of the
variation on the three left wheels, and visibly it is not suffi-
cient. The small rocks on the right are perfectly recognized.
This situation has a very distinctive pattern, and only with
difficulty can it be confused with another. The fact that we
could not learn and recognize a situation where the robot is
crossing a big rock on its right avoids any confusion.

The major problem is the high rate of insertion. This rate is
due to the noise of the sensors being recognized as a situation.
This is especially the case for situations characterized only
by small variations on a part (or all) of the set of sensors, in
particular the crossing of a small hill.

6 Related work

Markov models have been widely used in mobile robotics.
[Thrun, 2001] reviews techniques based on Markov models
for three main problems in mobile robotics: localization, map
building and control. In these techniques, a Markov model
represents the environment, and a specific algorithm is used
to solve the problem. Our approach is different in a num-
ber of ways. We address a different problem: the interpre-
tation of temporal sequences of mobile-robot sensor data to
automatically detect features. Moreover, we use very little a
priori knowledge: in particular, the topology of the model re-
flecting the human’s understanding about sequences of sensor
data characterizing a particular feature. All the other param-
eters of the model are estimated by learning. On the contrary,
the techniques presented in [Thrun, 2001] need some prelim-
inary knowledge: a map of the environment, a sensor model
and an actuator model. Usually, there is no learning compo-
nent in these techniques.

The most well-known work including a learning compo-
nent is by [Koenig and Simmons, 1996]. They start with an a
priori topological map that is translated into a Markov model
before any navigation takes place. An extension of the Baum-
Welch algorithm reestimates the Markov model representing
the environment, the sensor and actuator models. There are a
number of differences with this work:
� They use a Markov model to model the environment,

whereas we use a Markov model to model the sequence
of events composing a particular feature;

� They need some a priori knowledge: a topological map
of the environment, and sensor and actuator models;



� They make hypotheses on the value of some parameters
to reduce the number of parameters to estimate; we do
not make any such hypothesis;� The observations they use are discrete, symbolic and
unidimensional. There are obtained by an abstraction
(based on some hypothesis) of the raw data of several
sensors. Discrete symbolic and unidimensional obser-
vations are the result of our method. They are obtained
by interpretation of a sequence of raw data from several
sensor without any prior hypothesis.

Our work can be seen as a preliminary step for all of the work
presented in [Thrun, 2001]. We have previously built a sen-
sor model based on the recognition rates reported in this ar-
ticle; the model allowed robust localization in dynamic envi-
ronments [Aycard et al., 1998a].

7 Conclusion and future directions
In this paper, we have presented a new method to learn to
automatically detect features for mobile robots using second-
order Hidden Markov Models. This method gives very good
results, and has a good robustness to noise, verifying that
HMM2s are well suited for this task. We showed that the pro-
cess of recognition is robust to dynamic environment. Fea-
tures are detected even if they are quite different from learned
features: for instance, an open door is recognized even if it
is completely or partially opened. Moreover, features are de-
tected even if they are seen from a different point of view. For
instance, in contrast to Kortenkamp et al [Kortenkamp et al.,
1992], features are detected even if the robot is not at a given
distance from a wall and doesn’t move in a direction perfectly
parallel to the two walls constituting the corridor. Finally, our
approach has been successfully tested in an outdoor environ-
ment.

The results can be improved by adding more models to de-
crease the intra-class variability (especially for open doors
across from each other) and to take into account contextual
information. Another criterion that could improve the results
is to choose a different number of states for each feature.

Moreover, the method takes advantage of analytical meth-
ods and pattern classification methods. First, we analyze the
sensor data and define a model to represent the patterns in the
data. Secondly, the learning algorithm automatically adjusts
the parameters of the model using a learning corpus. More-
over, the learning algorithm was able to extract more complex
characteristics of a feature than simple variations of sensor
data between two consecutive moments. For instance:� The length of a sequence4 of observations was taken into

account in the first experiment to detect the difference
between a T-intersection and an open door;� In the first experiment, the gradual decrease (resp. in-
crease) of the value of sensors located in front (resp. in
the rear) of the robot during time has been used to char-
acterize a start (resp. an end) of corridor;� The algorithm can find correlation between data from
sensors of different types to characterize a feature. For

4the number of observations composing the sequence

example, the correlation of the roll, pitch and wheel cur-
rent sensors is used to characterize a situation in the sec-
ond experiment.

However, our method has two drawbacks:� As in Kortenkamp et al [Kortenkamp et al., 1992], a fea-
ture can only be recognized when it has been completely
visited. For example, the robot would have to go back to
turn at a T-intersection after it had recognized it.� Moreover, using the current technique, the list of places
is known only when the run has been completed. To de-
tect features online during navigation, we can use a vari-
ant of the Viterbi algorithm called Viterbi-block [Kri-
ouile et al., 1990]. This algorithm is based on a local
optimum comparison of the different probabilities com-
puted by the Viterbi algorithm during time-warping of a
shift-window of fixed length in the signal and the differ-
ent HMMs. This algorithm can detect features a few
meters after they have been seen. We have used this
algorithm to perform localization in dynamic environ-
ment [Aycard et al., 1998a].
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