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Abstract

Second order hidden Markov models have been used for a
long time in pattern recognition, especially in speech recog-
nition. Their main advantages over other methods (neural
networks ...) are their capabilities to model noisy tempo-
ral signals of variable length. In a previous work, we pro-
posed a new method based on second order hidden Markov
models to learn and recognize places in an indoor environ-
ment by a mobile robot, and showed that this approach is
well suited for learning and recognizing places. In this pa-
per, we propose major modifications to increase the global
rate of places recognition. Results of experiments on a real
robot with distinctive places are given.

1 Introduction

The automatic recognition of places is an important issue
that determines the capability of a mobile robot to local-
ize itself in its environment. Place recognition is useful
in a variety of tasks such as the automatic construction of
topological maps [4]. Place learning and place recognition
have been addressed by different approaches such as an-
alytical methods or pattern classification methods. In the
first approach, the problem is studied as a reasoning pro-
cess. For instance, [9] uses ultrasonic sensors to build evi-
dence grids [3] associated with places and defines an algo-
rithm to match two places. On the contrary, in the second
approach, stochastic [1] or neuronal [7] models of places
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are built from training sensor data. The recognition pro-
cess is envisioned as the association of the signal acquired
from sensors with a model of the place to identify.

The purpose of this paper is to present a pattern classi-
fication approach of the recognition process in which places
are modelized using second order hidden Markov models
(HMM2). This is a robust approach for handling the large
variability of complex temporal signals such as the one per-
ceived by a mobile robot. One of the main advantage of
this approach is the capability of automatically building
stochastic models from temporal signals even if they are
noisy. HMM2s have been shown to be efficient models for
capturing temporal variations in speech [5] and in many
cases they surpass first order hidden Markov models when
trajectory in the state space has to be accounted for.

In robotics, [8] used stochastic models based on Par-
tially Observable Markov Decision Process (POMDP) for
developping navigation methods. Their objective is to find,
given an observation, the best action to reach a predefined
goal, whereas our goal is to find, given an observation,
the place recognized. Moreover, they do not use Markov
models for sensor interpretation, and include actions of the
robot in their model. On the contrary, in our work, we
use Markov models for sensor interpretation, but planifica-
tion and execution of actions are performed by other tech-
niques [6].

In a previous work [1], HMM2s have been shown to
be efficient for the place recognition problem. Even if a
good recognition rate has been obtained (75%), some limits
of our approach have to be overcame. We propose in this
paper a substantial improvement of our previous approach :
the new recognition rate reaches 92%.

In this paper, we briefly describe our mobile robot in
section 2. In section 3, we summarize the HMM2s and the
algorithms for training and recognition of places. Section 4
describes the methodology used in [1], presents the results
obtained and discuss the limits of these results. In section 5,
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Figure 1: Our mobile robot

we present majors modifications we performed to increase
the global rate of recognition. We give some conclusions
and perspectives in section 6.

2 Description of our robot

Our robot is a Nomad200 manufactured by Nomadic Tech-
nologies. It is composed of a base and a turret. The turret
can rotate independently of the base.

The base is formed by 3 wheels and a ring of 20 tactile
sensors. They detect contact with objects. They are only
used for the emergency cases. They are associated with
low-level reflexes such as emergency stop and backward
movement.

The turret is an uniform 16-sided polygon. On each
side, there is an infrared and an ultrasonic sensor. The
ultrasonic sensors give range information from 17 to 255
inches. But the quality of the range information greatly
depends on the surface of reflection, and the angle of inci-
dence between the ultrasonic sensor and the object. The in-
frared sensors measure the difference between emitted light
and reflected light. They are very sensitive to the ambient
light, the object color, and the object orientation. Since we
assume that for short distances, the range information is ac-
ceptable, we just use infrared sensors for the areas shorter
than 17 inches, where the ultrasonic sensors are not usable.

3 TheSecond Order Hidden M arkov
Models

In a HMM2, the underlying state sequence is a second-
order Markov chain. Therefore, the probability of a tran-
sition between two states at time ¢ depends on the states in
which the process was at time¢ — 1 and ¢t — 2.

A second order hidden Markov model X is specified

by:
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Figure 2: Topology of states used for each model of place

e a set of states called S;

¢ a 3 dimensional matrix a;;; over SXS xS
aijr = Prob(qs = sk/qi—1 = 8j,q1—2 = $i)

= PTOb(Qt = Sk/Qt—l = S;,qt—2 = Si,qt—3 = )
N
withY aje=1 for1<i<N,1<j<N
k=1
where NV is the number of states in the model and ¢; is
the actual state at time t ;

e each state s; is associated with a mixture of Gaussian
distributions.

In this formalism, each place to be recognized is mod-
eled by an HMM2 whose topology is depicted in figure 2.

In this experiment, we have to face several major is-
sues: designing efficient algorithms for training and recog-
nition purposes; collecting a corpus of observations during
several runs and labelling this corpus by finding temporal
borders of each item that the robot has observed during its
run.

3.1 Therecognition phase

The recognition is carried out by the Viterbi algorithm. This
algorithm is a dynamic programming search that determines
the most likely state sequence (ie, the most likely place se-
quence) given a sequence of observations. The most likely
state sequence is obtained by keeping track of back pointers
for each computation of which previous transition leads to
the maximal partial path probability. By tracing back from
the final state, we get the most likely state sequence (ie, the
most likely place sequence).

The robot’s environment is described by means of a
grammar that enables some sequence of models and restrict
other ones. According to this grammar, a bigger HMM2,
constituted by a sequence of HMMZ2 of places, is built on
which the Viterbi algorithm is used. Then, the best se-
quence of states determines the ordered list of places that
the robot saw during its run. It must be noted that the list
of models is known only when the run is completed.
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Figure 3: The 5 places to learn

3.2 Thelearning phase

The learning of the models is performed with the Baum-
Welch algorithm using the maximum likelihood estimation
criteria that determines the best model’s parameters accord-
ing to the corpus of items. Intuitively, this algorithm counts
the number of occurrences of each transition between the
states in the training corpus. Each count is weighted by the
probability of the alignment (state, observation).

It must be noted that this criteria does not try to sep-
arate models like a neural network does, but only tries to
increase the probability that a model generates its corpus
independently of what the other models can do.

More details on these two algorithms and their exten-
sions for second order hidden Markov models can be found
in [1].

4 Application to mobilerobotics

In [1], we chose to model five distinctive places (figure 3)
that are representative of our office environment: a corridor,
a T-intersection, a start of corridor when the robot reaches
the start of a corridor, an end of corridor when the robot
reaches the end of a corridor and an open door. This set
of items is a complete description of what the mobile robot
can see during its run. All other unforeseen objects, like
people wandering along in a corridor or static obstacles,
are treated as noise.

4.1 The corpuscollecting and labeling

We built a corpus to train a model for each place. For this,
our mobile robot makes 50 passes (back and forth) ina long
corridor (approximatively 30 meters). This corridor con-
tains two curves (one at the start of the corridor and one
at the end), a T-intersection and some open doors (at least
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Figure 4: The segmentation corresponding to a T-
intersection

four, and not always the same). The robot ran with a re-
active navigation algorithm [2] which enables the robot to
cross a corridor staying as far as possible in the middle of
the corridor in a direction parallel to the two walls constitut-
ing the corridor while avoiding unknown obstacles. While
running, on each pass all the robot’s ultrasonic sensor data
are stored in a file. The 100 files corresponding to the 50
passes constitute the learning corpus. The acquisitions are
done in real conditions with people wandering in the lab,
doors completely or partially opened and static obstacles
like shelves.

A pass in the corridor contains not only one place but
all the places seen while running in the corridor. To learn
a particular place, we need to segment passes in distinctive
places. Moreover, we need to select the pertinent sensors’
measures to observe a place. This task is more complex
because the sensors’ measures are noisy and when there is
a place on the right side of the robot, there is another place
on the left side of the robot. For these reasons, we choose
to segment passes to use for each side, the sensor perpen-
dicular to each wall of the corridor and its two neighbor
sensors. These three sensors normally give valid measures.
So for each pass, we have two segmentations: one for the
right side, and one for the left side.

As all places except the corridor cause a noticeable
variation on these three sensors over time, we define the
beginning of a place when the first sensor’s measure sud-
denly increases, and the end of a place when the last sen-
sor’s measure suddenly decreases. Figure 4 shows an ex-
ample of the segmentation on the right side with these three
sensors of a part of an acquisition corresponding to a T-
intersection. The first line segment is the beginning of the
T-intersection (sudden increase on the first sensor), and the
second line segment is the end of the T-intersection (sudden
decrease on the third sensor). The left part of the first line
and the right part of the second line are a corridor place.
Figure 5 shows the position of the robot at the beginning
and at the end of the T-intersection and the measures of the



Figure 5: The three sonars used for the segmentation of a
T-intersection

three sensors used at these two positions for the segmenta-
tion.

4.2 Themodes training

As said earlier, we chose three coefficients corresponding
to the three sensors’ measures. Because the segmentation
was made using the variations on these three sensors’ mea-
sures, we use the first derivative of the three sensors’ mea-
sures as input of the model. The topology used to train
each model is shown in figure 2. Intuitively, we can think
that the first state will contain the strong increase of the sig-
nals corresponding to the beginning of the place, the second
state will contain the stationary part of the signals (where
the derivative is nearly equal to zero) and the third state
will contain the end of the place where the signal decreases
strongly.

The training has been performed twice for each pass,
once using the first derivative of the three right sensors to
learn places on the right side and once using the first deriva-
tive of the three left sensors to learn places on the left side.

Two different kinds of training are performed. The first
training uses segmented data and each model is trained in-
dependently on these data. The second training uses the
former models and estimates them on unsegmented data
like in the recognition phase. It means that we build a
bigger model (constitued of a sequence of the models of
places) according to the sequence of observed places and
train the resulting model with the unsegmented data.

4.3 Therecognition phase

The goal of the recognition process is to spot the recog-
nized places in the corridor. A model for the corridor is
used because the Viterbi algorithm has to map each frame
to a model during the recognition. The corridor model
connects 2 items like a silence between 2 words in speech
recognition.

During this experiment, the robot uses its own reactive
algorithm [2] to navigate in the corridor and must decide
which places have been encountered during the run. We
took 10 new passes (back and forth) and used the five mod-
els trained to perform the recognition.

The recognition has been performed twice for each
pass, once using the first derivative of the three right sen-
sors to make a recognition on the right side and once the
first derivative of the three left sensors to make a recogni-
tion on the left side.

A place is recognized if it has been detected by the cor-
responding model. But different types of errors can occur:

Insertions: the robot has seen a non existing place. This
corresponds to an over segmentation in the recogni-
tion process. Insertions are actually considered when
the width of the place is more than 80 centimeters;

Deletions: the robot has missed the place;

Substitutions: the robot has confused the place with an-
other.

44 Firs results and discussion

The results are presented in the confusion matrix 1.

start end T- open | Ins.
corridor | corridor | inter. | door
start corridor 15 0 0 0 8
end corridor 0 19 0 0 17
T-inter. 1 1 16 38 67
open door 0 0 2 77 0
deletions 0 0 0 1 0
Total 16 20 18 116
% reco. 93 95 89 63

Table 1: Previous results

An element ¢;; at row ¢ and column j is the number
of times the model j has been recognized when the right
answer was the place i.

Start and end of corridor place are well recognized.
Theses places have a very particular pattern®, and are diffi-
cult to confuse with another.

1We defi ne the pattern of a place as the pattern of the graphic repre-
sentation of observationsof the place over timeasin fi gure 4.



T-intersections are globally well recognized, though
sometimes confused with open doors.

Open doors are often confused (1 time of 3) with T-
intersections for several reasons:

o The pattern of the signal when the robot passes in front
of an open door is very similar to the pattern of the sig-
nal when the robot passes in front of a T-intersection.
Moreover, since HMM2s do not have a great power of
discrimination, they cannot easily make the distinction
between two models.

¢ \We have only one T-intersection, but several open doors
each different from the others. In addition, we worked
in a real environment, where the doors are completly
or partially opened. The HMM of the open door is
thus a model which contains variable signals, which
increase the confusion with T-intersection.

Most of the insertions are due to the inaccuracy of
the navigation algorithm and to the unexpected obstacles.
Sometimes the mobile robot has to avoid people or obsta-
cles, and in these cases it does not always run parallel to the
two walls, in the middle of the corridor. These conditions
cause reflections on the three sensors which are interpreted
as places.

Places are globally well recognized (over 85% of recog-
nition, for each place, except open doors), and 75% of
global recognition. The major problem is the insertions
(54%) of places. Let us note omissions occur with a very
low probability (less than 1%).

5 Improvement of therecognitionrate

To improve the rate of recognition, we have to resolve two
major problems:

¢ Reduce the rate of confusion between open-doors and
T-intersections. For this, we have to find a way to im-
prove the discrimination between these two HMM?2s.
These two types of places have similar pattern but dif-
ferent width. An open door has a width of 90 cen-
timeters, and a T-intersection has a width of 120 cen-
timeters. So, the most important criteria which allows
an open door to be distinguished from a T-intersection
is the width, but at the moment it is not really effec-
tive. Currently, observations are done each time the
robot has moved. As the robot has a variable speed
depending on its local environment, the distance trav-
elled between two observations is not constant. So we
have to find a way to take into account the width of
each place during learning and recognition. Our idea
is to transform observations, to simulate that the robot

always moves the same distance between two observa-
tions. This will help HMM2s to discriminate between
T-intersections and open doors using a width criteria.

¢ Reduce the rate of insertions. At the moment, the
learning and recognition of places are performed on
each side independently using only three sensors on
each side (ie, six sensors in all). This technique has
two drawbacks:

— We lose information about the environment us-
ing only 6 sensors (2 sets of 3 sensors). Our mo-
bile robot has 16 sensors. Informations provided
by front and rear sensors are not currently taken
into account. We have insertions of start or end
of corridor in the middle of the corridor, which
makes no sense. Front sensors could avoid these
insertions.

— The learning and recognition are performed on
each side independently. This does not permit
learning and recognition of places in a global
way. A more global learning and recognition
could be useful for several reasons. For exam-
ple, the influence of one side’s recognition on
the other could be taken in account, to eliminate
some obvious insertions.

Our idea is to take into account all the 16 sensors’
observations.

The two next subsections present the two major modifica-
tions we used to improve the rate of recognition. In the
third subsection, we discuss the new results.

5.1 Transformation of observations

To be able to easily distinguish the open-door place and
T-intersection place by their width, it’s necessary that be-
tween two acquisitions the distance travelled by the robot
will always be the same. On our mobile robot, it is im-
possible to program automatic acquisitions as a function
of the distance travelled, but it is possible to acquire ob-
servations in the same way we did in the first experiment
(section 4.1) and modify them before learning phase and
recognition phase to simulate that between two acquisitions
a constant distance has been travelled. So, we analyzed the
distance travelled between two acquisitions supposing that
the error of the odometric position estimate was insignifi-
cant between two observations. We notice that:

¢ Inacluttered area, the robot approximatively moves 1
centimeter between two acquisitions.

¢ In a free area, the robot approximately moves 5 cen-
timeters between two acquisitions.
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Figure 6: The 10 global places

If we choose to simulate (interpolating from real data) that
acquisitions are done at least 5 centimeters apart, we are
sure to always have at least one real acquisition of the robot
within the interval, and thus have different measures for
each simulated acquisition. We decided to simulate that
the robot will make an acquisition each 7.5 centimeters.
We voluntary chose a bigger distance than 5 centimeters to
be sure that the robot will always make at least a real ac-
quisition between two simulated acquisitions. We chose a
very simple algorithm to transform acquisitions. The main
idea to simulate an acquisition for each sensor, is to make
an average for each sensor every 7.5 centimeters travelled
based on all real acquisitions done in between. We simulate
too that the robot moves exactly 7.5 centimeters between
two acquisitions. For this, we compute the distance that the
robot travelled since its last simulated acquisition, and we
compute the position where the robot was supposed to be
after a travell of exactly 7.5 centimeters.

5.2 Using 16 sensors for learning and recog-
nition phase

As said previously, we modified our approach to use all the
16 ultrasonic sensors instead of 3 to build an HMM for each
place. Using 16 sensors, we take into account the pattern
of each place in a more general way.

But, previously defined places (figure 3) are useless.
Now, as we consider the environment in a global way, it
makes no sense to consider 5 places that can be seen on
each side. We have to define more global places taking into
account what can be seen on the right side and on the left
side.

To build the new global places, we combine the 5 pre-
vious places (figure 3) observable on the right side with the
5 places observable on the left side. As we do not consider
the combination of open doors with T-intersections or with

start or end of corridor as they nearly never appear in our
environnement, we define 10 new places (figure 6):

e A corridor, where there is at the same location a cor-
ridor seen by the 3 left sensors and a corridor seen by
the 3 right sensors.

e An T-intersection on the right (resp. left), where there
is at the same location a corridor seen by the 3 left
(resp. right) sensors and an intersection seen by the 3
right (resp. left) sensors.

¢ An open door on the right (resp. left), where there is
at the same location a corridor seen by the 3 left (resp.
right) sensors and an open door seen by the 3 right
(resp. left) sensors.

o A start of corridor on the right (resp. left), where there
is at the same location a corridor seen by the 3 left
(resp. right) sensors and a start of corridor seen by the
3 right (resp. left) sensors.

¢ Anend of corridor on the right (resp. left), where there
is at the same location a corridor seen by the 3 left
(resp. right) sensors and an end of corridor seen by
the 3 right (resp. left) sensors.

e Two open doors across from each other, where there
is at the same location an open door seen by the 3 left
sensors and an open door seen by the 3 right sensors.

5.3 New resaults and discussion

As we consider the environment in global way, we do not
have two (one on each side) segmentations, two training
runs and two recognitions for each pass. We will do only
one segmentation using the definitions of the 10 new places.
Training and recognition are done once with the first deriva-
tive of the 16 sensors’ measure as inputs of each HMM2.
We label the same previous learning corpus (section 4.1)

using the rules defined in section 5.2. We perform the learn-
ing phase of the 10 new places using the new segmentation.
The recognition phase is performed using the same previ-
ous recognition corpus (section 4.3). The goal of the recog-
nition process is to spot the 9 places (end of corridor on the
left, end of corridor on the right, intersection on the left,
intersection on the right, open door on the left, open door
on the right, open doors across from each other, start of
corridor on the left and start of corridor on the right) in the
corridor. Results are given in the confusion matrix 2.

We notice that the rate of confusion between open doors
(on the left or on the right) and T-intersections (on the left
or on the right) decreased. Due to the transformation of
observations, the number of observations for an open door



right | right | right | right | left | left | left | left | door | Ins.
start | end | inter. | door | start | end | inter. | door | door
right start 7 0 0 0 0 0 0 0 0 0
right end 0 7 0 0 0 1 0 1 0 0
right inter. 0 0 7 0 0 0 0 0 0 0
right door 0 0 0 42 0 0 0 1 1 25
left start 0 0 0 0 8 0 0 0 0 0
left end 0 0 0 0 0 6 0 0 0 0
left inter. 0 0 0 0 0 0 8 0 0 0
left door 1 0 0 4 0 0 1 43 1 34
door door 0 0 1 0 0 0 0 1 2 1
oublis 0 1 0 0 0 0 0 0 0 0
Total 8 8 8 46 8 7 9 46 4
% reco. 88 88 88 91 | 100 | 86 89 93 50

Table 2: New results

(resp. T-intersection) is nearly always the same. As the
number of observations for open doors is different of the
number of observations for intersections, the discrimina-
tion between these two types of places is easier.

We had previously a significant number of insertions
of T-intersections. We have actually no more insertion of
T-intersection, but a higher number of insertions of open
doors. In fact, a T-intersection has a higher width than an
open door, and so insertions of small width correspond-
ing to a reflection on the sensors can only rarely be recog-
nized as T-intersections, but rather as open doors. On the
other hand, we had 67 insertions of T-intersections without
transformation of the observations, against currently 59 in-
sertions of open door. Now, reflections of small duration
are assimilated as noise and can not be recognized as open
door or intersections, so the global rate of insertions has
decreased.

The use of the 16 sensors during the learning phase
eliminated insertions of start of corridor (resp. end of cor-
ridor) when the robot is not at one end of the corridor. Ob-
servations of sensors situated on the front of the robot are
very different when the robot is in the middle of the corri-
dor, or at the end of the corridor. So, the models of start of
corridor (resp. end of corridor) could be recognized only
when observations of front and rear sensors correspond to
the start of a corridor (resp. the end of a corridor), which
will rarely occur when the robot is in the middle of the cor-
ridor. So, it is nearly impossible to have insertions of start
of corridor (resp. end of corridor) in the middle of a corri-
dor.

The rate of recognition of two open doors across from
each other is mediocre (50%) for several reasons :

o \We did not make the distinction between when the first

open door is on the left and the second on the right or
the contrary.

¢ We did not take into account that the two open doors
can overlap themselves during a few observations or
during many observations.

e As said previously, we worked in a real environment
with several open doors each different from the others.
Moreover, some doors are completely opened and oth-
ers partially opened. The model has to take in account
this diversity.

The 3 previous reasons make that the HMM2 of this place
is a model which contains variable signals, as opposed to
one trained to recognize a very well specified signal.

With our two modifications, the global rate of recogni-
tion is increased from 75% to 92%. Insertions of places de-
creases from 54% to 42%. Omissions stay very low proba-
bility (less than 1.5%).

6 Conclusion and per spectives

In this paper, we have presented a new method to learn and
recognize places in an indoor environment with second or-
der hidden Markov models. One of the main interests of
this work is the specification of an automatic learning algo-
rithm of the environment that allows the recognition of typ-
ical places. The transformation of observations to simulate
constant frequency of observation improve the global rate
of recognition by decreasing the confusion between open
doors and T-intersections. The use of 16 sensors instead of



2 sets of 3 allows the environment to be learned and rec-
ognized in a more general way, which decreases the rate of
insertions by eliminating insertions of start or end of corri-
dor (left or right) in the middle of a corridor. This method
gives good results, and has a good robustness to noise. The
results can be improved by adding more models to decrease
the intra-class variability (especially for open doors across
from each other) and to take into account contextual infor-
mation. This method has two drawbacks. Like in [4], a
place can only be recognized when it has been completely
seen. So, the robot has to go back to turn at a T-intersection,
for example. Moreover, it must be noted that the list of
places is known only when the run is completed.
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