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Abstract

In this paper, we present a new method to localize a
mobile robot in dynamic environments. This method
i1s based on places recognition, and a match between
places recognized and the sequence of places that the
mobile robot is able to see during a run from an initial
place to an ending place. Our method gives a coarse
tdea of the robot’s position and orientation. Moreover,
we can determine the actual state of places (i.e open
doors, closed doors).

1 Introduction

When a mobile robot navigates, the knowledge of
its position and orientation relatively to its environ-
ment is usefull. These informations are crucial to know
if a specified goal has been reached, or to know the po-
sition of the mobile robot on a predefined path.

Dead reckoning is a simple method for mobile robot
that integrates wheel translation and rotation to de-
termine the robot’s Cartesian location. However, due
to slippage between the robot’s wheel and the ground,
the translations and rotations measured by the wheel
encoders may not reflect the robot’s actual motions.

Some studies have been done to avoid this drift.
This can be done in two different ways :

e In the first technique called “Map-based position-
ing”, the robot uses its sensors to create a map
of its local environment. This local map is com-
pared to a global map previously stored in the
memory. If a match is found, then the robot can
compute its actual position and orientation in the
environment. [4] uses ultrasonic sensors to build
a geometric map of the environment and an Ex-
tended Kalman Filter to compute the drift in po-

sition and orientation.

The great advantage of this method is that at
any time the mobile robot have a precise orienta-
tion and position. But this method is only usefull
when the environment contains enough station-
nary easily distinguishable features that can be
used for matching. Moreover, we should note that
currently most work in map-based positioning is
limited to laboratory settings and to relatively
simple and nearly static environments.

The second method is called “Place-based posi-
tioning”. Places like T-intersections or open doors
have a fixed and known position, relative to which
a robot can localize itself. The robot uses its
sensors to recognize places in its local environ-
ment. So, the main task in localization is then
to recognize the places reliably and to calculate
the robot’s position. [8][5] define the environ-
ment as a graph, where each node corresponds
to a place, and arc are paths to go from one place
to an other. [8] represents each place by an evi-
dence grid[3]. Using dead reckoning and a grid-
matching algorithm, the mobile robot computes
the drift in position and orientation when its mo-
bile robot passes in a previously learned place. [5]
defines a number of distinctive places, and defines
rules to recognize two distinctive places by ultra-
sonic sensors, and attaches a visual signature to
differenciate two places of the same class. The
recognition of places is performed using sensors
and vision. As its mobile robot navigates with
a simple wall-following in an environment con-
stitued of corridors, the goal of localization is to
compute the robot position in the crossed corri-
dor.

This technique only performs a periodical local-
ization, but as it is based on places recognition,
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Figure 1: The 8 global places

it is more robust to changes in environment.

In this paper, we present a new method to localize
a mobile robot using “Place-based positioning”. We
too represent the environment as a graph, where each
node corresponds to a place, and arcs are paths to go
from one place to an other. As [5], we define a certain
number of distinctive places. We define 8 classes of
places (figure 1). We only use ultrasonic sensors to
recognize places. Our goal is to have a coarse idea of
the robot position during a run from an initial place
to an ending place. So we extract from the graph the
sequence of places that the robot will see and com-
pare them with the sequence of places recognized dur-
ing the run. This comparison is based on the rate
of confidence we have in places recognition. It gives
the robot position even if some places are not visi-
ble, for instance an open door which has been closed.
Moreover, the comparison is usefull to determine the
actual state of the environment (i.e the opened doors,
the closed doors and the free T-intersections), and to
update the graph representing the environment.

This paper is organized as follow. In section 2, we
give a short presentation of our mobile robot. In sec-
tion 3, we summarize previous work [2] on place learn-
ing and recognition using second-order Hidden Markov
Models. Section 4 is the description of our method-
ology. We discuss results in section 5 and give some
conclusions and perspectives in section 6.

2 Description of our robot

Our robot is a Nomad200 (figure 2) manufactured
by Nomadic Technologies. It is composed of a base
and a turret. The turret can rotate independently of
the base.

The base is formed by 3 wheels and a ring of 20 tac-
tile sensors. They detect contact with objects. They
are only used for the emergency cases. They are asso-
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Figure 2: Our mobile robot

ciated with low-level reflexes such as emergency stop
and backward movement.

The turret is an uniform 16-sided polygon. On each
side, there is an infrared and an ultrasonic sensor. The
ultrasonic sensors give range information from 17 to
255 inches. But the quality of the range information
greatly depends on the surface of reflection, and the
angle of incidence between the ultrasonic sensor and
the object. The infrared sensors measure the differ-
ence between emitted light and reflected light. They
are very sensitive to the ambient light, the object
color, and the object orientation. Since we assume
that for short distances, the range information is ac-
ceptable, we just use infrared sensors for the areas
shorter than 17 inches, where the ultrasonic sensors
are not usable.

3 Previous work

In previous work [2], we presented a new method
to learn and recognize 8 distinctive type of places (fig-
ure 1) based on second-order Hidden Markov Models
(HMM2s). HMM2s have been shown to be efficient
models for capturing temporal variations in speech
[6] and in many cases they surpass first order Hidden
Markov Models (HMM1) when the trajectory in the
state space has to be accounted for. We used them to
learn and recognize places by a mobile robot running
in an indoor environment. For this, we built a model
for each place, and trained it using a learning corpus.

To evaluate the rate of recognition, we compare
what the robot had to see, and what it had really
recognized. Our mobile robot makes 20 passes (back
and forth) in a very long corridor (approximatively 30
meters) composed of a combination of the 8 classes of
places. During this experiment, the robot uses its own
reactive algorithm [1] to navigate in the corridor.

A place is recognized if it has been detected by the
corresponding model and it has been found close to its
real geometric position. But different types of errors
occured:



right | right | right | left left left | door | Ins.
curve | inter | door | curve | inter | door | door
right curve 17 0 0 0 0 1 0 0
right inter. 0 9 0 0 0 0 0 1
right door 0 42 0 0 1 1 24
left curve 0 0 0 14 0 0 0 1
left inter. 0 0 0 0 8 0 0 0
left door 0 0 2 1 1 43 1 32
door door 0 0 0 0 0 1 2 4
ommissions 1 0 1 0 0 0 0 0
Total 18 9 45 15 9 46 4 62 ‘
% reco. 94 100 93 93 89 93 50 ‘

Table 1: Confusion matrix

Insertions: the robot has recognized a non existing
place. This corresponds to an over segmentation
in the recognition process. Insertions are actually
considered when the width of the place is more
than 80 centimeters;

Deletions: the robot has missed the place;

Substitutions: the robot has confused the place with
an other.

The results are presented in a confusion matrix (ta-
ble 1). An element ¢;; at row ¢ and column j is the
number of time the model j has been recognized when
the right answer was the place 7. For instance over 133
corridors seen, 126 have been recognized as corridors,
but 3 have been recognized as right doors, 3 have been
recognized as left doors and has not been recognized.

Most of the insertions are due to the inaccuracy of
the navigation algorithm and to the unexpected obsta-
cles. Sometimes the mobile robot has to avoid people
or obstacles, and in these cases it does not always run
parallel to the two walls, in the middle of the corridor.
These conditions cause reflections on sensors which are
interpreted as places.

4 Our approach

If we want to use our previous results to localize
our mobile robot during a run, we have to face to sev-
eral problems. On one hand, the rate of recognition is
not perfect. If we recognize a place, we will not know
if it 1s a right recognition, a wrong recognition or an
insertion. So we can not use it without comparing the
places recognized with the places seen, to detect in-
sertions and bad recognitions. On the other hand, it
is impossible, due to the dynamic of the environment,
to know a priori what sequences of places the robot
is able to see during a run from an initial place to an
ending place. For instance, when extracting the in-
formations from the graph, we determine that during

a run, the mobile robot has to recognize a sequence
of places in which there are 3 open doors on the left,
and if at least one of these doors has been closed, the
sequence of places extracted from the graph will not
correspond to the actual state of the environment, and
the comparison will have no sense.

On the other hand, given the confusion matrix (ta-
ble 1) we can know which confidence we give to a place
that has been recognized. Moreover, given an initial
place and an ending place, we can easily extract the se-
quence of places the robot will see. If we can take into
account that some places are not visible (i.e a closed
door), it is possible to determine the actual state of the
environment and the position of the robot. Describing
the sequence of places visible using an automaton (fig-
ure 6), each time a place is recognized we will be able
to determine, function of the confidence according to
this recognition, the state of the automaton where the
mobile robot has the highest probability to be.

Our problem of localization can be cast in a clas-
sic HMM problem : given a sequence of recognized
places o, find the optimal state sequence. This prob-
lem is usually solved using the forward-backward al-
gorithm. In the next subsections, we present HMMs,
and how we applied them to build an HMM represent-
ing the sequence of places that the robot will see dur-
ing its movement. In the last subsection, we present
the modifications we performed to adapt the forward-
backward algorithm to solve our problem of localiza-
tion.

4.1 Definition of Hidden Markov Model

A very complete tutorial on Hidden Markov Models
and their application can be found in [7].

An Hidden Markov Model is defined by :

o A set of states including an initial state and a
final state defining the topology of the Model.

e A matrix A of probabilities of transitions from
one state to another, where a;; is the probability
of going from state i to state j.

e A matrix B of probabilities of observations associ-
ated with each state, where b;(j) is the probability
of observing symbol j in the state 1.

4.2 Use of confusion matrix

To build the matrix of confidence according to di-
verse recognized places (table 2), we only take the
transposate of the confusion matrix (table 1) and nor-
malyze it. In fact, we want here to determine what



corridor |[ right | right || right left. left left || door || Omm.
curve || inter || door || curve || inter || door || door
corridor 84% 0% 0% 4% 0% 0% 4% 0% 1%
right curve 0% 94% 0% 0% 0% 0% 0% 0% 6%
right inter. 0% 0% 90% || 0% 0% 0% 0% 0% 0%
right door 1% 0% 0% || 58% 0% 0% 2% 0% 2%
left curve 1% 0% 0% 0% 93% 0% 1% 0% 0%
left inter. 0% 0% 0% 0% 0% 100% || 4% 0% 0%
left door 0% 6% 0% 1% 0% 0% 51% [ 17% 0%
door door 0% 0% 0% 3% 0% 0% 1% || 1% 0%
Ins 14% 0% 10% || 33% % 0% 37% | 66%

Table 2: Confidence matrix

has been really seen as a function of what has been
recognized.

4.3 Construction of the topology of the

model
3 4

Figure 3: Description of a part of a corridor
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Figure 4: Part of the graph corresponding to the de-
scription

Given the description of a part of a corridor, where
the mobile robot has to go from the location 1 to the
location 5, the topology of our model (figure 4) is a
part of the graph representing the environment. At
this moment, our topology is only a direct path going
from the initial place to the last place.

To take into account insertions, we add a transition
which allows to stay in the same state of the automa-
ton (figure 5).

All the places are not obligatory visible : for
instance, a door can be closed or a T-intersection
blocked. In this case, when the mobile robot will pass
in front of these places it will see a corridor. So, when
the mobile robot has recognized a corridor, we must

right T-intersection

&

corridor |&ft door |eft door
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Figure 5: Taking into account insertions

Figure 6: Taking into account that some places are
not visible

take into account the fact that one or some places are
not visible. For this, we add some transitions which
permits to the mobile robot when it recognizes a cor-
ridor to go from the current state to all other next
states (figure 6).

4.4 Localization

Using the forward-backward algorithm, the proba-
bility of the robot being in state i at time ¢ can be
expressed as :

a (i) By (i)
ity (i) By (0)
As we want to know the most likely state after each
recognized place, we only need to know the forward

variable. As a consequence, our problem has to be
rewritten :

Ve (i) =

at(i)
S o (i)

This forward variable has to be computed induc-
tively, as follows :

Ye(i) =

1. Initialization
aq(f) = mb;(01), 1 <i< N

2. Induction

a 1<
at1(j) = [Z at(i)“ij] bj(ot41), | <



Here m; is the probability of being in state ¢, a;;
is the probability to reach the state j starting from
state i and b;(0) expresses the probability of having
recognized the place o in state :. So our problem of
localization will be solved easily if we know the tran-
sition and the observation probabilities.

4.4.1 The transition probabilities

We have three classes of transitions : self-transitions,
one-step transitions and several-steps ones.

o self-transition : the robot is in state ¢, it recog-
nizes a place o. To stay in the same state, o has
to be an insertion. As each place has a differ-
ent probability to be inserted, the self-transition
probability will be dependent of the place recog-
nized : we write a;;(,) = Pr(Inserted, o).

e one-step transition : this is the "normal" transi-
tion. The robot is in state i, it recognizes a place
o and goes to state j. In fact, this is a little more
complicated, because closed doors and blocked in-
tersections are recognized like a corridor. The
probability to go from one state to the next one
is also dependent of the place recognized :

if {; # Corridor
_J Pr(l;,0) + Pr(Corridor,o)
di(i+1)(0) =

Pr(l;, 0) otherwise

where [; is the place that has to be recognized to
leave the state 2.

e multiple steps transitions : this occurs when one
or several places have been omitted or one or sev-
eral places are blocked (closed doors or blocked
T-intersections are recognized as corridors). To
take into account the probability of a place to be
blocked, we divide the probability to be in a cor-
ridor by the number of blocked places. In this
case, we have

a;ij(o) = Hk:i_”._2 Pr(ly, Ommission)| x Pr(l;_1,0)

Pr(Corridor,o
_|_

T—i—1

4.4.2 The observation probabilities

As we have seen in the previous section, the transition
probabilities are dependent of the places recognized
and the observations corresponding to the states. So
we don’t need anymore the b function used in the for-
ward algorithm, which is rewritten as follows :

1. Initialization
ar(i) =m, 1 <i< N

2. Induction

aiy1(j) = [Z at(i)aij(0t+1)

i=1

4.4.3 A brief example

To explain how our system works, we will develop it
on a simple example. The robot crosses the corridor
(figure 3), beginning in state 1 (with probability 1),
and recognizes the following places : right door, corri-
dor, left door, right T-intersection, left door, corridor.
Figure 7 shows the most likely state after each observa-
tion. The first right door has to be an insertion, then
the first left door is closed (cause we only recognize a
corridor).

Transitions
Right door

Left door Left door

Right T-intersection

Corridor Corridor

@
-~
iy iy X Gne Y
(-~ o~ e N OB

Figure 7: Recognition of the state of the environment

5 Experiments and results

In this section, we give the detail of a mission where
the robot ran from the begin of the corridor to the T-
intersection (figure 8). The recognition is performed
online. The table 3 gives the recognized places, a de-
duction of the actual state of the environment and
approximation of the position of the robot.

As long as the places are recognized, the compari-
son with the description of the environment permits to
know the position of the mobile robot and the actual
state of the places of the environment. All the open
doors, the T-intersection and the curve at the begin-
ning of the corridor have been recognized. On the
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Figure 8: State of the environment

New balises | position of || state of the
recognized the robot || environment
Corridor Insertion

Right curve 1 Initial curve visible
Left door 2 Office 108 opened
Corridor 3

Left door Tnsertion

Right door 4 Office 101 opened
Left door 5 Office 110 opened
Corridor 6 Office 112 closed
Left door 7 Office 114 opened
Corridor 8 Office 116 closed
Left door 9 Office 118 opened
Corridor 10

Right door 11 Office 105 opened
Left door 12 Office 120 opened
Corridor 13 Office 122 closed
Left door 14 Office 124 opened
Corridor Office 126 closed
right inter. 15 right inter. visible

Table 3: Use of places recognized to deduce the ac-
tual state of the environment, and the approximative
position of the robot

other hand, the robot has recognized two open door
(Office 108 and 120) instead they were closed. Each
of these two doors are near an other door, and in this
configuration, an insertion is difficult to detect.

Each time, a new place has been recognized, and
the corresponding place in the environment has been
found, we can be sure the robot is recognizing the next
place of the sequence representing the corridor. So, the

mobile robot is in front of the place, it is recognizing.

6 Conclusion

In this paper, we presented a new method to lo-
calize a mobile robot using “Place-based positioning”.
Our method gives a coarse idea of the robot position
during a run from an initial place to an ending place.
Moreover, it determines to the actual state of the en-
vironment (i.e the opened doors, the closed doors and
the free T-intersections), and to update the graph rep-
resenting the environment.

On the other hand, if some places are not visi-
ble and at the same time, the mobile robot inserts
some places, we will find a wrong state of the envi-
ronment and a wrong localization. This problem can
be resolved using distance informations, and a Par-
tially Observed Markov Decision Process, which will
take into account the length of the displacement of the
robot, and moreover, will choose the best motion to
increase the knowledge about the environment.
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