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Abstract

We present a multi-agent architecture for controlling a
mobilerobot in an unpredictible environment. This ar-
chitecture has been developed with the objective of co-
ordinating the various competences of the robot (e.g.,
perception, navigation, planning). The architecture is
made up of two agents: the first one specialized for
cognitive tasks, the second one dedicated to control of
the robot’s physical devices. This two-agent architec-
ture guarantees a good robustness of the system, as
the navigation modules can run independently of the
cognitive ones.

1 Introduction

Being able to design a robot that can both “sense/act”
and “reason” at the same time in a coordinated way
is a very important goal for both Robotics and Al
In a dynamic and unpredictable environment, a whole
spectrum of reactions can be expected from a robot:
from a minor bump on its trajectory to avoid an unex-
pected obstacle, to a major revision of the plan which
is intended to carry out a given mission. Moreover,
small communication bandwidth and/or low commu-
nication speed can limit heplful human intervention:
decisions about reactions strictly have to be made on-
board. These two requirements of reaction width and
of onboard decision making constitute the first step
towards the autonomy of a robot.

Embedding symbolic computation into robots has
been studied by researchers for decades. Fikes, for ex-
ample, uses a symbolic planner inside the Shakey robot
in the early 70’s [8]. But apart from the fact that task
planning, for example, is an NP-complete problem [4],
embedding a reasonably efficient symbolic reasoning
capability in a robot leads to difficult architectural is-
sues per se: time spent reasoning may be time lost for
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sensing /reacting. For example, the robot might plan
for a task which is already obsolete due to fast changes
in the environment — hence making that whole plan-
ning session useless, in retrospect.

In another view, Brooks argues that keeping an ex-
plicit model of the environment inside a robot may
be useless because the robot is situated in its environ-
ment [3]. (Similarly, living organisms are situated in
their natural environment through evolution.) The ar-
chitecture of robots’ software should be thought of as
a combinatorial circuit and a time circuitry — both
being hand-programmed at design time. However,
coupling onboard reasoning with physical moving still
seems to be required due to the discrete aspect of robot
(re)actions, to the various abstraction levels required
for them and to their multiple meanings [5] For ex-
ample, the robot may act in several ways: navigating
to reach some location; navigating to perform bee-like
figures to warn other robots; moving objects by push-
ing them; moving objects by manipulating them with
a clamp, with objects having complex uses and func-
tions.

In another view towards adressing architecural is-
sues, it has been proposed to keep the environment’s
symbolic model inside the robot but to have it run in
parallel with sensing/reacting parts [9] [11]. If both
activities run on the same processor (even using real-
time operating systems), the sensing/reacting capabil-
ity of the robot is still weakened, but interesting real-
izations in natural/non-engineered environments have
been built [9].

To reinforce this latter view, a paradigm of AI coined
multi-agent proposes to have problems solved by a a
set of autonomous entities (agents). The behavior of
this society of agents (terms used by analogy with hu-
man and animal societies) emerges from the individual
activities of these agents and from their mutual inter-
action [7]. In this paper, we propose a multi-agent
architecture for controlling a mobile robot which can
reason (e.g., plan) and sense/act at the same time.
We first present the design of the multi-agent system.
We then present the specific agents for object motion.
An implementation on a mobile robot is presented and
discussed.



2 System Design

Multi-Agent. The mobile robot materializes the
agents’ society: the behavior of the robot s the emerg-
ing behavior of this society. Various number of agents
of a multi-agent system (or, closely, various number of
levels of a unique agent) has been proposed: One [16],
two [8], three [9] or n [3]. The system presented in
this paper stands between the extreme many-simple-
agent approach and the extreme single-complex-agent
one: a small number of reasonably complex agents are
modeled. We propose (i) an agent architecture, (ii)
common component types for agents, (iii) a role for
each agent in the society, (iv) a communication proto-
col for collaboration.

Architecture of One Agent. Each agent is com-
posed of independent modules (behaviors), a mecha-
nism for choosing which module to execute next (con-
troller) and shared memory (blackboard) [10]. A be-
havior is made up of two parts: iriggering conditions
determine the executability of the behavior, the second
part contains the behavior’s source code itself.

The controller is a best-first execution cycle on the
set of instantaneously-executable behaviors. At each
cycle, it checks which behavior is executable (irig-
ger condition checking), sorts the executable behaviors
by decreasing importance (agenda management), and
gives control to the most important one (ezecution).
It is the behavior’s responsibility to give control back
to the controller, so as to make the next cycle possible.

At each cycle the executable behaviors that were
less important than the executed one are forgotten
(hence the term best-first ezecution cycle, for a best-
first search would keep them). Since all behaviors are
considered at each cycle for executability check, a be-
havior which is declared executable at a given cycle
can be declared executable at the next cycle, if its
triggering conditions are not affected by the executed
behavior.

The sort criterion for evaluating the importance of
executable behaviors can be specified in a dedicated
part of the shared memory (control plan).

An event is a record of a change in the shared mem-
ory. A memory change can be initiated by the execu-
tion of a behavior or by reception of a message from
another agent (which, in turn, comes from the exe-
cution of its own behaviors). Events, behaviors and
other internal objects are stored in another dedicated
part of the shared memory.

The controller matches behaviors’ triggering condi-
tions against events: This prevents the controller from
uselessly polling an unchanged shared memory, hence
it reduces the controller’s CPU consumption for non-
behavioral use.

3 Specialization for Object Mo-
tion

For the application of object motion, the presented
system is composed of two agents. These agents have
heterogeneous semantics and isomorphic structures —
hence they play complementary roles in this society.
One agent is in contact with the environment through
sensors and effectors. It carries out a behavior for
action (in a sense similar to walking, running) or per-
ception (e.g., noticing an open area on the right). An-
other agent manipulates the interpretation of previous
physical behaviors. We informally refer to the former
agent as a physical agent and to the latter agent as a
cognitive agent.

The cognitive agent sends action description to the
physical agent. The physical agent sends events to
the cognitive agent. An event can be perceptual (e.g.,
open door on the right, stuck) or related to the agent
itself (e.g., task performed, low battery).
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Figure 1: The software architecture of each agent.

To attempt at achieving given task, a mobile robot
must anticipate: its intended actions influence the cur-
rent action. This temporal aspect leads to give at least
two behaviors to an agent, as shown in Figure 1: mon-
itoring (i.e., computation about the agent’s present)
and planning (i.e., computation about the agent’s fu-
ture).

3.1 Cognitive Agent

Task Planning. The triggering condition of this be-
havior is the presence in the shared memory of a (con-
junctive) goal which has no plan satisfying it.

This behavior consists of finding a sequence of ac-
tion descriptions (a plan) that transforms an initial
situation description to another in which a given con-
junction of goals is satisfied. The initial situation de-
scription typically is the current situation of the robot,
the goals altogether represent a task to achieve. This



behavior uses a set of descriptions of the actions that
the robot can physically perform (see Figure 2). An
action is represented as pre-, post-conditions [8] and
preservation conditions (i.e., preconditions which must
hold during the action’s execution) [15].

(deftemplate (drop ?robot 7object 7location)
:preservations ((robot ?7robot)
(height 7object 7height)
(at ?robot ?location)
(clamp-height 7height))
:preconditions ((at 7object 7robot)
(:not (is-clamp-open)))
:postconditions ((at 7object 7location)
(:not (at ?7object 7robot))
(:not (is-clamp-open)))
:location 7location)

Figure 2: Description of a drop action.

The initial situation description and the goals form
an initial plan, which is incrementally improved during
the process. The task planner handles partial-ordered
partially-instantiated plans: two actions in parallel
mean that they are unordered, an uninstantiated vari-
able means that it can be instantiated to more than
one constant (the domain of a variable is pruned dur-
ing the process). Arithmetic equations can be main-
tained by representing integers as function symbols in
actions’ pre- and postconditions [13]; this enables to
represent limitations on the capacity of the robot.

Task planning is a search in the space of partially-
ordered partially-instantiated plans [4]. A best-first
search, for example, ensures completeness. A plan is
a solution to a given planning problem (i.e., initial
plan plus action descriptions) iff it contains no un-
satisfied precondition or preservation condition. The
satisfaction of a precondition (or, similarly, of a preser-
vation condition) is computed in polynomial time with
a modal truth criterion (MTC) [4]. This ensures cor-
rectness of the generated plans.

Monitoring. The triggering condition of this behav-
ior is the presence in the shared memory of a plan
which contains unexecuted action descriptions.

This behavior attempts at having a plan executed by
sending (a simplification of) its current action descrip-
tion to the physical agent — this decoupling makes the
cognitive agent available for reasoning on other tasks.
Such action description is declared executed when a
message of successful completion is received from the
physical agent. A failure message leads to replanning
from the situation just before that action description
— this situation is computed by simulating the exe-
cution of action descriptions from the initial situation,
i.e., adding positive postconditions to it and retracting
negative ones from it [8].

An action description can be sent to the physical
agent before reception of any message related to the
previous action description, if the preservation con-
ditions of one of them do not conflict with the post
conditions of the other one, according to the MTC al-
gorithm.

1. If event is performed-action and event source is
physical agent,
a. If the current plan has no unexecuted actions,
Then If there exists at least another plan,
Then select another plan as current.
Flse exit from this behavior.
b. Unstack the current action from the current
plan.
c. Send it to the physical agent.

2. If event type is goal and event source is physical agent,
store it in the shared memory.

3. If event type is percept and event source is physical
agent,
a. If the event negates a preservation condition
of the currently executed action,
Then stop this action and turn this condition
into a goal.
b. Store it in the shared memory.

Figure 3: Rules for monitoring.

More precisely, this behavior reacts to events (sent
by the physical agent), by choosing a plan (step 1.a of
Figure 3), taking the current action of that plan (step
1.b) and sending it to the physical agent (step 1.c).

The monitor also filters the perceptual events from
the physical agent (step 2). For example, a goal event
which is perceived in the environment (e.g., requests
from humans) is recognized, which may lead the cogni-
tive agent to plan or replan (see previous paragraph).
The monitor also recognizes an self-related event which
conflicts with a preservation condition of currently-
executed action descriptions (step 3); If so, it turns the
threatened preservation condition into a goal (which,
again, may lead the cognitive agent to plan or replan).

3.2 Physical Agent

Path Planning. This triggering condition of this
behavior is the presence of a motion action descrip-
tion in the shared memory of the physical agent.
This behavior uses a topographic map and a topolog-
tcal map of the environment. Both maps are stored in
the shared memory of the physical agent. The topo-
graphic map records fixed obstacles: each point is a bi-
nary value can-go/cannot-go — the environment is as-
sumed to be plane. A node of the topological map cor-
responds to a salient location of the topographic map
(see Figure 5 for an example). A location is salient iff
it can be detected in 2D with precision by the robot’s



sensors. When the path between two salient locations
is unique, an edge is added between these two nodes.
The topological map is manually extracted from the
topographic map in a preprocessing phase.

Path-planning involves: (1) finding the salient point
sp1 which is the closest to the current location; (2)
finding the salient point sp; which is the closest one
to the goal location; (3) searching for sp,, starting at
sp1, in the topological map. For example, an A* search
ensures completeness and produces a path from sp; to
spz which is minimal according to a cost function (e.g.,
path length).

Navigating. The triggering condition of this behav-
ior is the presence of a primitive motion action descrip-
tion in the shared memory of the physical agent.

The robot has three wheels for translation. Turns
can be made by rotating the wheels around a vertical
axis (non-holonomic motion). Environment is sensed
through a 20-bumper ring (emergency stop) and a 16
sonar/infra-red ring (regular navigation).

Different sensor zones are defined around the robot
(e.g., left, front, right); each zone gives a preferred ro-
tation angle and speed for the next cycle; a fuzzy con-
troller merges the different advice (i.e., obstacle avoid-
ance on the left/front/right) to compute the actual
values [1]. Navigation stops either (1) when the next
salient location is reached (The method for building
the topological map from the topographic map guar-
antees its existence) or (2) when the goal location is
estimated to be reached using odometry (Again, the
method for building the topological map from the to-
pographic map guarantees the minimal use of this nav-
igation mode.) Salient location detection uses the vari-
ation of a sonar/infra-red sensor value between two
time points [12] (e.g., open door or corridor on the
right).

Grabbing/Dropping. The triggering condition of
this behavior is the presence of a grab/drop action de-
scription in the shared memory of the physical agent.

A clamp, at the back of the robot, is composed
of two parallel bars that move in a horizontal plane
(see Figure 4). This clamp can move vertically, can
open/close, can detect resistance when closing (hence
meaning that an object is being grabbed if d # 0) and
can rotate. (The upper part of the robot is a rotatable
turret on which the upper part of the clamp’s rail is
fixed.)

The plan for grabbing is: (1) move the clamp ver-
tically to reach the target-object’s height (the object’s
height refers to the height at which the object should
be grabbed, see Figure 2, the actual height of the ob-
ject usually is higher); (2) open the clamp; (3) close
the clamp until resistance is detected; if the clamp
is closed and no resistance has been detected on the
way, re-open the clamp until d = d,, 4, send a warning

Figure 4: A two-finger clamp rotates (angle ¢) around
the turret’s axis (at distance o from the clamp), moves
vertically (distance h from the floor, 0 < h < hyyaq)
and opens/closes (distance d, 0 < d < dyqz)-

message to the physical monitor and go to step (3); (4)
move the clamp up. A priori actions (1) and (2) are
unordered.

The plan for dropping is: (1) move the clamp down
to reach the target-object’s height; (2) open the clamp
until d = dpyqz; (3) move the clamp down. For safety
purposes, the robot with an empty clamp navigates
with the clamp in low position h = 0. Objects are
assumed to have their lower part less wide than dy,qq-

Monitoring. The triggering condition of this behav-
ior is the presence of a plan in the agent’s shared
memory which contains unexecuted action descrip-
tions. The only difference with the cognitive monitor
is that the only filtered percept is the completion or
failure of an action — such events are propagated to
the cognitive agent.

A plan here either is a structure simpler than these
for the cognitive monitor (i.e., sequence of salient lo-
cations) or is hand-coded in an action.

4 Experiments

The two-agent architecture has been implemented on a
Nomad 200 mobile robot [6]. It is composed of a base
and a turret, which can rotate independently. The
base is composed of three wheels and is protected by a
20-bumper ring. The turret’s horizontal cross-section
is an uniform 16-side polygon, with an infrared and
ultrasonic sensor on each vertical plane (i.e., on each
side of the polygon). The turret also carries a stereo
CCD-camera and a pair CCD-camera / laser. An on-
board pentium PC under the Linux operating system
communicates with the sensors/effectors. It also com-
municates with the local computer network of the lab-
oratory via a radio link.

We tested the two-agent architecture in scenarios
where the mobile robot gathers soda cans in an indoor
environment (the second floor of the CRIN-CNRS lab-
oratory, see Figure 5). Objects not mentionned in the
topographic map include: shelves, door frames, fire
extinguishers, cardboard boxes and people. This envi-
ronment has not been engineered for mobile robots in
particular.
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Figure 5: A topographic map. (Nodes and edges of the
topological maps are shown as dots and thin lines.)

A goal (a mission) is sent on the fly to the cognitive
agent: typically, bringing a soda can to some location
— the initial locations of the robot and of the can
are included in the model of the environment (topo-
graphic, topological and symbolic) which is maintained
by the robot. Figure 6 and 7 show typical traces of the
robot’s motion and of the cognitive / physical agents’
activity.

5 Discussion

1. Again, our point is not to demonstrate the per-
formance of a particular behavior but to demonstrate
the usefulness of a multi-agent architecture for con-
trolling a unique vehicle. However, in cases actually
happening in our scenarios in our environment, task
planning is faster than action execution (less than one
second for task planning [13], several seconds for ac-
tion execution [1]). But due to the polynomial or ex-
ponential complexity of each behavior, opposite obser-
vations could be made in close scenarios (e.g., safely
moving seven stacked boxes with one intermediate lo-
cation only (problem known as the Towers of Hanot)).
For the general case, domain-dependent behaviors can
be added to each one of the two agents and can mask
default-case behaviors (e.g., using priorities in line
1.a.3 in Figure 3 or in similar lines of the physical
monitor).

2. The plans executed by the physical monitor are
mostly hand-programmed (except that navigation can
require path planning). Extending the best-first exe-
cution cycle that currently implements a monitor by
using a language such as PRS-Lite [14], for represent-
ing such plans or procedures, would help expressing
the knowledge on use conditions of sensors/effectors
and associated behaviors. Thus this would (1) help
making these behaviors reusable for instances of our
architecture on other robots, (2) improve the reac-
tion capabilities while the cognitive agent deliberates
(e.g., replans), hence nicely enabling a form of graceful
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Figure 6: Trace for soda can gathering.

degradation [3].

3. We were not able to find a behavior which was
neither cognitive nor physical, so an agent actually
refers to a behavior type, either cognitive or physi-
cal. Now, if an agent refers to a function [7], more
than two such agents can be represented in our archi-
tecture: each controller acts as an operating system
assigning time slices to (aggregations of parts of dif-
ferent) behaviors/agents, their conflicting roles being
handled by use of a MTC on their description, or more
generally by mutual negociation. For example, an “ob-
stacle avoidance” functional agent may involve nav-
igating, path-planning and task planning behaviors,
with potential negociation between path-planning and
task-planning (e.g., opening a door (which may require
fetching keys) vs. taking a longer path to go around
it (through another open door)).

Ongoing work involves using Hidden Markov Models
for navigation to cope with reflection of sonar/infra-
red sensors on obstacles [2], and using the stereo CCD-
camera for active 3D sensing.
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Figure 7: Trace for soda can gathering. (An unex-
pected obstacle in front of office B-024 leads the robot
to go around the stairways.)

References

[1]

Olivier Aycard. A Two-Level Fuzzy Con-
troller for Mobile Robot Navigation. Techni-
cal report, CRIN-CNRS/INRIA-Lorraine, Nancy,
France, 1996.

Olivier Aycard, Jean-Francois Mari, and Francois
Charpillet. Place Learning and Recognition using
Hidden Markov Models. Technical report, CRIN-
CNRS/INRIA-Lorraine, Nancy, France, 1996.

Rodney Brooks. Intelligence without Reason. In
Proceedings of the International Joint Conference
on Artificial Intelligence, pages 979-984, Detroit,
MI, 1991.

David Chapman. Planning for Conjunctive Goals.
Artificial Intelligence, 32:333-377, 1987.

Raja Chatila. Deliberation and reactivity in au-
tonomous robots. Robotics and Autonomous Sys-
tems, 16:197-211, 1995.

(6]

[7]

(8]

[12]

David Zhu et al. Nomad 200 user s manual. Tech-
nical report, Nomadics Technologies Inc., Moun-
tain View, CA, 1996.

Jacques Ferber. Les Systemes Multi-Agents: Vers
une Intelligence Collective. InterEditions, Paris,
1995.

Richard E. Fikes and Nils J. Nilsson. STRIPS:
a New Approach to the Application of Theorem
Proving to Problem Solving. Artificial Intelli-
gence, 2:198-208, 1971.

Erann Gat. Integrating Planning and Reacting in
a Heterogeneous Asymchronous Architecture for
Controlling a Real-world Mobile Robot. In Pro-
ceedings of the Tenth National Conference on Ar-
tificial Intelligence, San Mateo, CA, 1992. Morgan
Kaufmann.

Barbara Hayes-Roth. A Blackboard Architecture
for Control. Artificial Intelligence, 26:251-321,

1985.
Barbara Hayes-Roth, Karl Pfleger, Philippe La-
landa, Philippe Morignot, and Marko Bala-

banovic. A Domain-Specific Software Architec-
ture for Adaptive Intelligent Agents. TEEFE Trans-
actions on Software Engineering, 21(4):288-301,
April 1995.

D. Kortenkamp, L. Douglas Baker, and T. Wey-
mouth. Using gateways to build a route map. In
proceedings of the 1992 IEEFE International Con-
ference on Intelligent Robots and Systems, 1992.

Philippe Morignot. Embedded Planning. In Kris-
tian Hammond, editor, Proceedings of the Second
International Conference on A.I. Planning Sys-
tems, pages 128-133, Chicago, IL, 1994.

Karen L. Myers. A Procedural Knowledge Ap-
proach to Task-Level Control. In Proceedings of
the Third International Conference on A.I. Plan-
ning Systems, Edimburgh, UK, May 1996.

Edwin Pednault. The Synthesis of Plans. PhD
thesis, E.E. Dept., Stanford, Palo Alto, Califor-
nia, 1986.

Marcel J. Schoppers. Universal Plans for Reac-
tive Robots in Unpredictible Environments. In
Proceedings of the International Joint Conference
on Artificial Intelligence, pages 1039-1046, 1987.



