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Abstract

In this paper, we propose a new method based on
Hidden Markov Models to learn and recognize places
in an indoor environment by a mobile robot. Hid-
den Markov Models have been used for a long time
in speech recognition, and we apply them to learning
and recognition of places because they are well adapted
to model temporal signals. The definition of Hidden
Markov Models, the learning algorithm and the recog-
nition algorithm are presented. Their applications to
learning and recognition of places by a mobile robot
are addressed. Results of two experiments on a real
robot with five distinctive places are given.

1 Introduction

The automatic recognition of places is an important
issue that determines the capability of a mobile robot
to locate itself in its environment. This is the first step
in the construction of cognitive maps [3].

Many researchers have studied place learning and
place recognition for mobile robots. This can be done
by two different ways:

e The knowledge based systems define rules to build
a representation of places. For instance, [3] de-
fines rules about the variation of the sonar sen-
sors to learn different types of places and adds a
visual information to recognize two places of the
same type. [8] uses ultrasonic sensors to build evi-
dence grids [1] associated with places, and defines
an algorithm to match two places. He applied
his method to spatial learning of a dynamic in-
door environment and re-localization in dynamic
indoor environments [9].

e The statistical systems attempt to describe the
observations coming from the sensors as a random
process that must be modeled in a proper way.
For instance, [6] teach a neural network to extract

places in an indoor environment from the data
given by a distance measurement system based on
a panoramic laser telemeter and use it to recognize
the places previously learned.

These two approaches are opposite from each other.
In the first approach, we look for understanding the
observations and building a representation of the ob-
servations, whereas in the second approach, we build
models that represent the statistical properties of the
observations.

Stochastic modeling is a flexible method for han-
dling the large variability of complex temporal signals.
In contrast to dynamic time warping where heuristic
training methods for estimating templates are used,
stochastic modeling allows a probabilistic and auto-
matic training for estimating models. A very complete
tutorial on Hidden Markov Models and their applica-
tion to speech can be found in [5].

In this paper, we present a new method to learn and
recognize places based on second-order Hidden Markov
Models (HMM2). HMM?2 have been shown to be effi-
cient models to capture temporal variations in speech
[4] and in many cases they overcome first order Hid-
den Markov Models (HMM1). We use them to learn
and recognize places by a mobile robot running in an
indoor environment.

This paper is organized as follow. In section 2, we
give a short presentation of our mobile robot. In sec-
tion 3, we define the HMM2 and give the algorithms
used for training and recognition. Section 4 is the de-
scription of our methodology. We discuss results in
section 5 and give some conclusions and perspectives
in section 6.

2  Description of our robot

Our robot (figure 1) is a Nomad200 commercialized by
Nomadics [7]. It is composed of a base and a turret.
The base is formed by 3 wheels, and tactile sensors.
The turret is an uniform 16-side polygon. On each
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Figure 1: Our mobile robot

side, there is an infrared and an ultrasonic sensor. The
turret can rotate independently of the base.

2.1 Tactile Sensors

A ring of 20 tactile sensors surrounds the base. They
detect contact with objects. They are just used for the
emergency cases. They are associated with low-level
reflexes as emergency stop, and backward movement.

2.2 Ultrasonic Sensors

The angle between two ultrasonic sensors is 22.5 de-
grees, and each ultrasonic sensor has a beamed width
of approximately 23,6 degree. By examining all 16
sensors, we can obtain a 360 degree panoramic view
fairly rapidly. The ultrasonic sensors give range in-
formation from 17 to 255 inches. But the quality of
the range information greatly depends on the surface
of reflection, and the angle of incidence between the
ultrasonic sensor and the object.

2.3 Infrared Sensors

The infrared sensors measure the light differences be-
tween an emitted light and an reflected light. They are
very sensible to the ambient light, the object color,
and the object orientation. As we assume that for
short distances, the range information is acceptable,
we just use infrared sensors for the areas shorter than
17 inches, where the ultrasonic sensors are not usable.

2.4 Odometry Measurements

The odometry measurement integrates the translation
and rotation of the robot, and updates the position
and orientation of the robot. As with all odometric
systems, it accumulates errors during movements. We
use 1t to have a coarse idea of the position and orien-
tation of the robot.

3 The second-order
Markov Models

In an HMM2, the underlying state sequence is a
second-order Markov chain. Therefore, the probability
of a transition between two states at time ¢ depends

Hidden

on the states in which the process was at time ¢ — 1
and t — 2.

A second Order Hidden Markov Model X is specified
by:

e a set of states called S;

¢ a 3 dimensional matrix a;;; over S x S x S
aijr = Prob(q: = sp/qi-1 = sj,qe—2=5;) (1)

= PTOb(Qt = Sk/(]t—l = Sj,qt—2 = Si,qt—3 = )
with the constraints

N
Z“iik:l with 1 <i< N, 1<j<N
k=1

where N is the number of states in the model and
g: 1s the actual state at time t ;

e cach state s; is assoclated with a mixture of Gaus-
sian distributions :

M
bz(Ot) = E Cim/\/(ot; Him, Eim)a (2)

m=1
M

with E Cim = 1
m=1

where Oy is the input vector (the frame) at time
t.

The probability of the state sequence Q = ¢1, qa, ..., q1
is defined as

T
Prob(Q) = mq, aq,q, H gy 3q1-1q: (3)

t=3

where II; is the probability of state s; at time t = 1
and a;; is the probability of the transition s; — s; at

time t = 2.
Hg

Figure 2: Topology of states used for each model of
place

In this formalism, each place to be recognized is
modeled by a HMM2 whose topology is depicted in
figure 2. Currently, we choose to model five distinc-
tive places that are representative of our office envi-
ronment: a corridor, a T-intersection, a “starting” an-
gle when the robot moves away from the angle, and



an “ending” angle when the robot arrives at this an-
gle and an open door (figure 3). This set of items is
an extensive description of what the mobile robot can
see during its run. All other unforeseen objects, like
people wandering along in a corridor, are treated as
noise.

In this experiment, we have to face several major is-
sues: design efficient algorithms for training and recog-
nition purposes; collect a corpus of observations during
several runs; label this corpus by finding temporal bor-
ders of each items that the robot has observed during
its run.

The recognition is carried out by the Viterbi algo-
rithm [2] which determines the most likely state se-
quence given an observed sequence of observations.
The learning of the models is performed using the max-
imum likelihood estimation criteria that determines
the best models’s parameters according to the corpus
of items. It must be noted that this criteria does not
try to separate models like a neural network does, but
only tries to increase the probability that a model gen-
erates its corpus independently of what the other mod-
els can do.

3.1 The Viterbi Algorithm

In Hidden Markov Models, many state sequences may
generate the same observed sequence o1,...,0r. Given
one such output sequence, we are interested in deter-
mining the most likely state sequence gq,...,qp that
could have generated the observed sequence. The ex-
tension of the Viterbi algorithm to HMM2 is straight-
forward. We simply replace the reference to a state in
the state space S by a reference to an element of the
2-fold product space § x S. The most likely state se-
quence is found by using the probability of the partial
alignment ending at transition (s;, sx) at times (t-1,t)

6e(J, k) = (4)
Prob(qi,...qe—2,qt—1 = Sj, 4t = Sk, 01, ..., 0t/ A)
29<t<T, 1<jk<N.

Recursive computation is given by equation

3¢ (4, k) = max1<i<n[0i—1(4, ) - agjr] - be(Or)  (5)
3<t<T, 1<jk<N.

The Viterbi algorithm is a dynamic programming
search that computes the best partial state sequence
up to time ¢ for all states. The most likely state se-
quence q1, ..., gp is obtained by keeping track of back
pointers for each computation of which previous tran-
sition leads to the maximal partial path probability.
By tracing back from the final state, we get the most
likely state sequence.

The robot’s environment is described by means of a
grammar that enables some sequence of models and re-
strict other. According to this grammar, all the HMM?2

are merged in a bigger HMM on which the Viterbi al-
gorithm is used. Then, the best sequence of states
determines the ordered list of places that the robot
saw during its run. It must be noted that the list of
models is known when the run is completed.

3.2 The Forward-Backward Algorithm

The Forward-Backward algorithm implements the
models’s estimation following the maximum likelihood
estimation criteria. Intuitively, this algorithm counts
the number of occurences of each transition between
the states in the training corpus.
weighted by the probability of the alignment (state,
observation). Since many state sequences may gen-
erate a given output sequence, the probability that a
model X generates a sequence 01,...,07 is given by the
sum of the joint probabilities (given in equation 77)
over all state sequences (i.e, the marginal density of
output sequences). To avoid combinatorial explosion,
a recursive computation similar to the Viterbi algo-
rithm can be used to evaluate the above sum. The
forward probability a;(j, k) is :

Each count 1s

prob((O1,...,0t = 01,...,0¢), gt—1 = S, gt = Sk /)

(6)
This probability represents the probability of starting
from state 0 and ending with the transition (s;, sx) at
time t and generating output o1,...,0; using all possible
state sequences in between. The Markov assumption
allows the recursive computation of the forward prob-
ability as :

ey (k) = D (i, j)-aije-bi (Orta), (7)

i=1
2<t<T—1, 1<j k<N

This computation is similar to Viterbi decoding ex-
cept that summation is used instead of max. The
value ap(j, k) where sy = N is the probability that the
Model A generates the sequence o1, ..., 0;. Another use-
ful quantity is the backward function (7, j), defined
as the probability of the partial observation sequence
from t+1 to T, given the model A and the transition
(si, s;) between times t-1 and t, can be expressed as :

Be(t,j) = Prob(Opy1, .07/ qi—1 = si, qr = s5, A),
(8)
2<t<T-1, 1<i,j<N

4 Application to mobile robotics
4.1 The corpus collecting and labeling

We built a corpus to train a model for each of the 5
places. For this, our mobile robot makes 50 passes
(back and forth) in a very long corridor (approxima-
tively 30 meters). This corridor (figure 4) contains two
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Figure 3: The places to learn

Figure 4: The corridor used to make our learning cor-
pus

angles (one at the start of the corridor and one at the
end), a T-intersection and some open doors (at least
four, and not always the same). The robot ran with
a simple navigation algorithm to stay in the middle of
the corridor in a direction parallel to the two walls con-
stituting the corridor. While running, we store all the
ultrasonic sensors’ measures of our robot. The acquisi-
tions are done in real conditions with people wandering
in the lab, doors completely or partially opened and
static obstacles like shelves.

A pass in the corridor contains not only one place
but all the places seen while running in the corridor.
To learn a particular place, we need to segment passes
in distinctive places. Moreover, we need to select the
pertinent sensors’ measures to observe a place. This
task is more complex because the sensors’ measures
are noisy and when there is a place on the right side
of the robot, there is an other place on the left side
of the robot. For these reasons, we choose to segment
passes to use for each side, the sensor perpendicular to
each wall of the corridor and its two neighbor sensors.
These three sensors normally gives valid measures. As
all places except the corridor cause a noticeable vari-
ation on these three sensors over time, we define the
beginning of a place when the first sensor’s measure
suddenly increases and the end of a place when the
last sensor’s measure suddenly decreases. The figure
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Figure 5: The segmentation corresponding to a T-
intersection

Figure 6: The three sonars used for the segmentation
of a T-intersection

5 shows an example of the segmentation on the right
side with these three sensors of a part of an acquisi-
tion corresponding to a T-intersection. The first line
segment is the beginning of the T-intersection (sud-
den increase on the first sensor), and the second line
segment is the end of the T-intersection (sudden de-
crease on the third sensor). The left part of the first
line and the right part of the second line are a corri-
dor place. The figure 6 shows position of the robot
at the beginning and at the end of the T-intersection
and the measures of the three sensors used at these
two positions for the segmentation.

4.2 The models training

As said earlier, we choose three coefficients correspond-
ing to the three sensors’ measures. Because the seg-
mentation was made using the variations on these
three sensors’ measures, we use the first derivative
of the three sensors’ measures. The topology used to
train each model is shown in figure 2. Intuitively, we
can think that the first state will contain the strong
increase of the signals corresponding to the beginning



of the place, the second State will contain the station-
ary part of the signals (where the derivative is nearly
equal to zero) and the third State will contain the end
of the place where the signal decreases strongly.

Two different kind of training are performed. The
first training uses segmented data and each model
is trained independently on these data. The second
training uses the former models and estimates them
on unsegmented data like in the recognition phase. It
means that we merge the models seen by the robot
during a complete run in a bigger model according to
the sequence of observed items and train the resulting
model with the unsegmented data.

4.3 The recognition phase

The recognition is performed in two steps. We took
40 acquisitions (20 passes) and used the five models
trained to perform the recognition. A place is rec-
ognized if it has been detected by the corresponding
model and it has been found near (less than 50 cen-
timeters) its real geometric position. But different
types of errors occured:

Insertions are places inserted in an other place. For
instance, during the recognition of a corridor place
(especially long corridor places), the robot some-
times recognizes the beginning of the corridor
place, an inserted place (generally a T-intersection
place or an open door place) and the end of the
corridor places. We noticed small insertions of
places (particularly in long corridor places) corre-
sponding to reflections (when the three sensors are
not perpendicular to the walls). These insertions
are automatically rejected, because it makes no
sense to consider an open door or a T-intersection
of less than 80 centimeters (size of the smallest
place of the environment). Insertions are actually
considered when they have a valid size (more than
80 centimeters).

Deletions are places that the mobile has not recog-
nized.

Substitutions are places that the mobile robot has
confused with an other.

5 Discussion

The results are presented in a confusion matrix (ta-
ble 1). Each column corresponds to a place seen during
a pass. Each line corresponds to a place that the robot
has recognized. For instance, 164 corridor places have
been seen over the 40 passes. 160 corridor places have
been recognized as corridor places, 1 as "end" angle
place (a substitution) and 3 have not been recognized
by the robot. So, 97% of the corridor places have been
recognized. The last column (in table ?7 corresponds

Ins.
corridor 160 || 0 0 0 7 62
"start" angle 0 50 0 0 8
"end" angle 1 0191 0 0 17
T-inter. 0 1 1] 16 || 38 67
open door 0 0 0 77 0
deletions 3 0 0 0 1 0
Total 164 || 16 || 20 || 18 || 122 || 164
% reco. 97 | 93 || 95 || 89 || 63

Table 1: Confusion matrix of places

number %
Places seen 340 100
Recognized 287 85

Substitued 49 14
Deleted 4 1
Inserted 164 48

Table 2: Results of global recognition

to the insertions. For instance, the corridor place has
been inserted 62 times.

In table 2, we present the global results. It means
the number and percentage of places seen, recognized,
substituted, omitted and inserted.

The places are globally well recognized (over 85% of
recognition, for each place, except the open door place,
and 85% of global recognition). The only problem is
the percentage of insertions (48 %) of other places.
Insertions are due to the navigation algorithm. Some-
times the mobile robot has to avoid people or obsta-
cles, and in these cases it does not always run parallel
to the two walls, and in the middle of the corridor.
These conditions cause reflections on the three sensors
which are interpreted as places. The deletions are very
few (less than 1 percent).

Corridor place, "start" angle place and "end" angle
place are very well recognized. Theses places have a
very particular pattern, and can difficulty be confused
with an other. Corridor places are characterized by
a very small variation in time over the three sensors.
Start angle places always begin with a progressive in-
crease on the three sensor’ measure, and end with a
sudden decrease on the last sensor’s measure. End
angle places always begin with a sudden increase on
the first sensor’s measure, and the end is marked by a
progressive decrease on the three sensor’s measure.

T-intersections are sometimes confused with open
doors and open doors with T-intersections. As we use
only one model for all open doors, and in real condi-
tions we find some different open doors (partially or



completely opened, with doors opened on the right or
the left), the model of open doors is representative of
this diversity. Moreover, some open doors looks like
(from a shape and size view) T-intersection , so the
confusion is very easy, which explains the low percent-
age of recognition of open door places (63 %) and the
high percentage of substitution of open door places by
T-intersection places (31 %). If we used more specific
open door places, for instance, one for doors opened
on the left and one for doors opened on the right, or to
use three models (or more) for a door : one when the
robot is along one wall, one when the robot is along
the other wall and one when the robot is in the middle
of the two walls, we could have less confusion, and so
decrease the percentage of substitutions between open
door places and T-intersection places, which means a
better percentage of recognition of these two places.

We implemented the recognition algorithm directly
on the mobile robot. The mobile robot was asked to
perform high level instructions like "go to the end of
the corridor" or "go to the third open door on the
right". The mobile robot runs memorizing its ultra-
sonic sensor’s measurements and a recognition is pe-
riodically performed (each 70 centimeters approxima-
tively). The results are noticeably similar to the pre-
vious experiments. The robot always stops at the end
of the corridor when it is asked to. But, sometimes
(approximately 25 %) the robot stops before or after
the asked place.

6 Conclusion and perspectives

In this paper, we have presented a new method to
learn and recognize places in an indoor environment
with Hidden Markov Models. This method gives good
results, and good robustness to the noise, as far as the
navigation algorithm runs in adequacy. The results
can be improved by adding more models to take into
account different classes of the same place. Asin [3], a
place can be recognized when the robot has crossed it
completely. It means that to turn at a T-intersection,
the mobile robot has to move back.

This method actually implemented on our mobile
robot is used to localize our mobile robot in its en-
vironment, and can be easily used to build cognitive
maps of the environment.
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